532 x y = 234 x 3
tìm y
cho x,y>0,x+y>=3
tìm gtnn: 2x^2+y^2+28/x+1/y
\(\)đặt \(2x^2+y^2+\dfrac{28}{x}+\dfrac{1}{y}=A\)
\(=>A=2x^2+y^2-7x-y+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
\(A=2x^2-8x+8+y^2-2y+1+x+y-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
\(A=2\left(x-2\right)^2+\left(y-1\right)^2+\left(x+y\right)-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
áp dụng BDT AM-GM\(=>\dfrac{28}{x}+7x+\dfrac{1}{y}+y\ge2\sqrt{28.7}+2\sqrt{1}=30\)
\(=>A\ge30+3-9=24\)
dấu"=" xảy ra<=>x=2,y=1
Bài 10. Cho 3 số dương x,y,z thỏa mãn: (√(xy/z)+√(xz/y)+√(yz/x)) = 3
Tìm GTNN của: P = (√x+√y+√z) + (2016/(√x+√y)) + (2016/√z)
Cho d1 : y = 2x – 3
d2 : y = -x + 9
d3 : y = (m – 1)x + m – 3
Tìm m để d1, d2 và d3 đồng quy
Phương trình hoành độ giao điểm của \(\left(d1\right),\left(d2\right)\) là:
\(2x-3=-x+9\)
\(\Leftrightarrow3x=12\)
hay x=4
Thay x=4 vào \(\left(d2\right)\), ta được:
\(y=-4+9=5\)
Thay x=4 và y=5 vào \(\left(d3\right)\), ta được:
\(4\left(m-1\right)+m-3=5\)
\(\Leftrightarrow4m-4+m-3=5\)
\(\Leftrightarrow5m=12\)
hay \(m=\dfrac{12}{5}\)
\(\dfrac{2}{x}\)=\(\dfrac{y}{5}\) và 2x - y = 3
tìm x và y (sử dụng tính chất dãy tỉ số bằng nhau / đặt k)
ĐKXĐ: x<>0
2x-y=3
=>\(y=2x-3\)
\(\dfrac{2}{x}=\dfrac{y}{5}\)
=>\(\dfrac{2}{x}=\dfrac{2x-3}{5}\)
=>x(2x-3)=10
=>\(2x^2-3x-10=0\)
=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{89}}{4}\left(nhận\right)\\x=\dfrac{3-\sqrt{89}}{4}\left(nhận\right)\end{matrix}\right.\)
Khi \(x=\dfrac{3+\sqrt{89}}{4}\) thì \(y=2\cdot\dfrac{3+\sqrt{89}}{4}-3=\dfrac{-3+\sqrt{89}}{2}\)
Khi \(x=\dfrac{3-\sqrt{89}}{4}\) thì \(y=2\cdot\dfrac{3-\sqrt{89}}{4}-3=\dfrac{-3-\sqrt{89}}{2}\)
Vẽ (d) : y= x+3
(d') : y = -2x-3
Tìm tọa độ giao điểm bằng ptoán
PT hoành độ giao điểm: \(x+3=-2x-3\Leftrightarrow x=-2\Leftrightarrow y=1\Leftrightarrow A\left(-2;1\right)\)
Vậy \(A\left(-2;1\right)\) là giao điểm 2 đths
1 phần 2 + 2 phần y = 3
tìm x,y thuộc z
giúp mik giải bài này vs
9/x = y/5, suy ra xy = 45. Do x, y nguyên nên x, y là ước của 45, từ đó ta suy ra x và y.
mày ko tích thì vẫn có đầy người để tích cho tao.
Cho d1:y=(2m-1)x+m-1
d2:y=x-3
Tìm m để giao d1;d2 thuộc góc phần tư thứ 1
Phương trình hoành độ giao điểm:
`(2m-1)x+m-1=x-3`
`<=>(2m-2)x+m+2=0`
`<=>x=-(m+2)/(2m-2)`
`d_1` giao `d_2` tại góc phần tư thứ 1 `<=> x=-(m+2)/(2m-2)>0 <=>-2<m<1`
Vậy `-2<m<1`.
(d):y=(m+1)x+3, (d'):y=2x+3
tìm tọa độ giao điểm của (d) và (d')
Tọa độ giao điểm của `(d)` và `(d')` là:
`(m+1)x+3=2x+3`
`<=>mx+x+3-2x-3=0`
`<=>mx-x=0`
`<=>x(m-1)=0`
`<=>[(x=0),(m=1 (loại)):}`
`=>y=2.0+3=0+3=3`
`=>` Tọa độ giao điểm của `(d)` và `(d')` là `(0;3)`.
cho các số thực dương x, y, z thỏa mãn x+y+x=3
Tìm gtnn của P = \(\dfrac{1}{2xy^2+1}+\dfrac{1}{2yz^2+1}+\dfrac{1}{zx^2+1}\)
Lời giải:
\(P=\sum \frac{1}{2xy^2+1}=\sum (1-\frac{2xy^2}{2xy^2+1})\)
\(=3-2\sum\frac{xy^2}{2xy^2+1}\geq 3-2\sum \frac{xy^2}{3\sqrt[3]{x^2y^4}}\) theo BĐT AM-GM.
\(=3-\frac{2}{3}\sum \sqrt[3]{xy^2}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt[3]{xy^2}\leq \frac{x+y+y}{3}\Rightarrow \sum \sqrt[3]{xy^2}\leq \frac{3(x+y+z)}{3}=3\)
$\Rightarrow P\geq 3-\frac{2}{3}.3=1$
Vậy $P_{\min}=1$. Giá trị này đạt tại $x=y=z=1$