Cho ba số thực dương x,y,z thỏa mãn xy+xz+yz=2016
\(\sqrt{\frac{yz}{x^2+2016}}+\sqrt{\frac{xy}{y^2+2016}}+\sqrt{\frac{xz}{z^2+2016}}\le\frac{3}{2}\)
Cho ba số thực dương x, y, z thỏa mãn xy+xz+yz = 2016. Chứng minh:
\(\sqrt{\frac{yz}{x^2+2016}}\)+\(\sqrt{\frac{xy}{y^2+2016}}\)+\(\sqrt{\frac{xz}{z^2+2016}}\)\(\le\)\(\frac{3}{2}\)
Cho x,y,z thỏa mãn điều kiện \(0\le x,y,z\le1\). Tìm GTLN của biểu thức \(M=x^{10}+y^6+z^{2016}-xy-yz-xz\)
cho các số dương x,y,z thỏa mãn xy+x+y=3 và yz+z+y=8 và xz+x+z=15 tính giá trị của P = x+y+z
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1. Chứng minh:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}>=\frac{3}{2}\)
Cho các số dương x,y,z thỏa mãn xy+yz+zx=3. Tìm GTNN của:
A= \(\frac{yz}{x^3+2}+\frac{xz}{y^3+2}+\frac{xy}{z^3+2}\)
Mình là thành viên mới, rất mong được học hỏi. Xin hãy giúp đỡ mình ạ!!!
cho 3 số thực dương x,y,z thỏa mãn xyz=1 cmr xy/(x^3+y^3+xy0+yz/(y^3+z^3+yz)+xz/(x^3+z^3+xz)<=1
cho x,y ,z là 3 số dương thỏa mãn x +y +z = 2
tìm GTLN của xy , xz ,yz
cho 3 số x,y,z dương thỏa mãn x+y+z=3
chứng minh
\(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
cho 3 số dương x y z thỏa mãn x+y+z=1 Chứng minh 3/(xy+yz+xz) + 2/(x^2+y^2+z^2) > 14