\(-\dfrac{\sqrt{x^2}}{x}\) với x> 0 có kq là
Mọi người giải thích cho em cái này với ạ
\(\sqrt{3x-1}=1+\sqrt{x+4}\)
⇔ 3x+1=1+x+4+2\(\sqrt{x+2}\)
⇔x+2−\(\sqrt{x+2}\) -4 =0
Đặt \(\sqrt{x+2}\) =t≥0
Thì mìh tính như thế nào để nó ra kq là t = \(\dfrac{1+\sqrt{17}}{2}\) vậy ạ?
Cho P= \(\dfrac{x+2}{x\sqrt{x}+1}\)+\(\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}\)- \(\dfrac{\sqrt{x}-1}{x-1}\)
a, Rút gọn
b, Tìm Min P
c, Cmr với những giá trị của x để P xác định thì P< 1
Mn ơi giúp mình với, giúp từ phần b á. Phần a mình ra kq là \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)rồi ạ.
Cảm ơn nhiều nhiều mấy bạn nào giúp đc nha ![]()
a : \(\dfrac{3}{\sqrt{x}-5}+\dfrac{20-2\sqrt{x}}{x-25}\)với x ≥ 0 x ≠ 25
b : \(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-2}{x-9}\)với x ≥ 0 x ≠ 9
c : \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\)với x ≥ 0 x ≠ 4
d : \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)với ≥ 0 x ≠ 1
\(a,\dfrac{3}{\sqrt{x}-5}+\dfrac{20-2\sqrt{x}}{x-25}\\ =\dfrac{3}{\sqrt{x}-5}+\dfrac{20-2\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\\ =\dfrac{3\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\dfrac{20-2\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\\ =\dfrac{3\sqrt{x}+15+20-2\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\\ =\dfrac{\sqrt{x}+35}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(b,\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-2}{x-9}\\ =\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-2}{x-9}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}+\dfrac{2\sqrt{x}-2}{x-9}\\ =\dfrac{x+3\sqrt{x}+2\sqrt{x}-2}{x-9}\\ =\dfrac{x-5\sqrt{x}-2}{x-9}\)
a: \(\dfrac{3}{\sqrt{x}-5}+\dfrac{20-2\sqrt{x}}{x-25}\)
\(=\dfrac{3\sqrt{x}+15+20-2\sqrt{x}}{x-25}=\dfrac{\sqrt{x}+35}{x-25}\)
b: \(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-2}{x-9}\)
\(=\dfrac{x+3\sqrt{x}+2\sqrt{x}-2}{x-9}=\dfrac{x+5\sqrt{x}-2}{x-9}\)
c: \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{x-4}\)
\(=\dfrac{x-3\sqrt{x}+2+5\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
d: \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
Bài 8. Cho M = \(\dfrac{\sqrt{x}+5}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm số thực x để M có giá trị nguyên
Bài 9. Cho P = \(\dfrac{\sqrt{x}+7}{\sqrt{x}+2}\) với x ≥ 0; x ≠ 1. Tìm các số thực x để P có giá trị là số nguyên.
Bài 8:
\(M=1+\frac{4}{\sqrt{x}+1}\)
Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên
Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương
$\Rightarrow \sqrt{x}+1=\frac{4}{t}$
$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$
$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$
Mà $t$ nguyên dương suy ra $t=1;2;3;4$
Kéo theo $x=9; 1; \frac{1}{9}; 0$
Kết hợp đkxđ nên $x=0; \frac{1}{9};9$
Bài 9:
$P=1+\frac{5}{\sqrt{x}+2}$
Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên
Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$
$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$
$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$
Với $t>0\Rightarrow 5-2t\geq 0$
$\Leftrightarrow t\leq \frac{5}{2}$
Vì $t$ nguyên dương suy ra $t=1;2$
$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)
Bài 8:
Để M nguyên thì \(\sqrt{x}+5⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)
hay \(x\in\left\{0;1;9\right\}\)
Cho biểu thức:
P= (\(\dfrac{3x-4}{4-x}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) - \(\dfrac{2\sqrt{x}-2}{3\sqrt{x}}\)) với x > 0; x ≠ 4
a) Rút gọn P
b) Tìm x để P > -1
c) Tìm giá trị của x để P có giá trị là số nguyên
ghi kq thôi cũng được ak
Rút gọn:
\(\left[1-\dfrac{x-3\sqrt{x}}{x-9}\right]:\left[\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right]\)
Ta có:
\(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}=\dfrac{\left(\sqrt{x}-3\right)\left(3+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(3+\sqrt{x}\right)}-\dfrac{x-9}{6-x-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}\)\(=\dfrac{x-9}{6-x-\sqrt{x}}-\dfrac{x-9}{6-x-\sqrt{x}}+\dfrac{\sqrt{x}+2}{3+\sqrt{x}}=\dfrac{\sqrt{x}+2}{3+\sqrt{x}}\)(1)
\(1-\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{x-9-x-3\sqrt{x}}{\left(\sqrt{x}\right)^2-3^2}=\dfrac{-3\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-3\right)\left(3+\sqrt{x}\right)}=\dfrac{-3}{\sqrt{x}-3}\left(2\right)\)Thay (1) và (2) vào biểu thức ta được
\(\dfrac{-3}{\sqrt{x}-3}:\dfrac{\sqrt{x}-2}{3+\sqrt{x}}=\dfrac{-3\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
Cái này mình không chắc lắm , không biết còn rút gọn được không nữa!
a : \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)với x ≥ 0 x ≠ 9
b : \(\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\)với x ≥ 0 x ≠ 1
c : \(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)với x ≥ 0 x ≠ 0
d : \(\dfrac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\dfrac{2}{\sqrt{x}+3}\)với x ≥ 0 x ≠ 1
a) \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\left(x\ge0;x\ne0\right)\)
\(=\dfrac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x-3}\right)}+\dfrac{2\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right).\left(\sqrt{x+3}\right)}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right).\left(\sqrt{x-3}\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3.\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
b) \(\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\left(x\ge0;x\ne1\right)\)
\(=\dfrac{3.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2}{\sqrt{x}+1}\)
c) \(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0;x\ne1\right)\)
\(=\left(\dfrac{15-\sqrt{x}}{\left(\sqrt{x}-5\right).\left(\sqrt{x}+5\right)}+\dfrac{2.\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right).\left(\sqrt{x}+5\right)}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right).\left(\sqrt{x}+5\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-5\right).\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(\dfrac{1}{\sqrt{x}+1}\)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x>0;\(x\ne1;x\ne4\)
a, rút gọn
b, với giá trị nào của x thì P có giá trị =\(\dfrac{1}{4}\)
c, tìm giá trị của Ptại \(x=4+2\sqrt{3}\)
P = (\(\dfrac{1}{\sqrt{x}-1}\) - \(\dfrac{1}{\sqrt{x}}\)) : (\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)) với 0 < \(x\) ≠ 1; 4
P = \(\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): (\(\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right).\left(\sqrt{x-2}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\))
P = \(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): \(\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) : \(\dfrac{3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(\times\) \(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\)
P = \(\dfrac{\sqrt{x}-2}{3.\sqrt{x}}\)
P = \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\)
b, P = \(\dfrac{1}{4}\)
⇒ \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\) = \(\dfrac{1}{4}\)
⇒4\(x\) - 8\(\sqrt{x}\) = 3\(x\)
⇒ 4\(x\) - 8\(\sqrt{x}\) - 3\(x\) = 0
\(x\) - 8\(\sqrt{x}\) = 0
\(\sqrt{x}\).(\(\sqrt{x}\) - 8) = 0
\(\left[{}\begin{matrix}x=0\\\sqrt{x}=8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=64\end{matrix}\right.\)
\(x=0\) (loại)
\(x\) = 64
Lời giải:
a. \(P=\frac{\sqrt{x}-(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)}: \frac{(\sqrt{x}+1)(\sqrt{x}-1)-(\sqrt{x}-2)(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}: \frac{x-1-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{3}{(\sqrt{x}-1)(\sqrt{x}-2)}\\ =\frac{1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-1)(\sqrt{x}-2)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b.
\(P=\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\\ \Rightarrow 4(\sqrt{x}-2)=3\sqrt{x}\\ \Leftrightarrow \sqrt{x}=8\Leftrightarrow x=64\)
(thỏa mãn)
c.
Tại $x=4+2\sqrt{3}=(\sqrt{3}+1)^2\Rightarrow \sqrt{x}=\sqrt{3}+1$
Khi đó:
$P=\frac{\sqrt{3}+1-2}{3(\sqrt{3}+1)}=\frac{2-\sqrt{3}}{3}$
Cho x>0 và x≠1, giá trị nhỏ nhất của biểu thức P= \(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) bằng \(\dfrac{a}{b}\)(với a,b là các số nguyên dương và \(\dfrac{a}{b}\) (với a,b là các số nguyên dương và \(\dfrac{a}{b}\) phân số tối giảm). Giá trị a+b bằng
A, 5
B. 9
C. 7
D. 6
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^3+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\) \(\Rightarrow a+b=7\)