Gtln gtnn của y=x+√2 cosx trên đoạn [0 ;pi/2 ]
Tìm GTLN, GTNN của hàm số:
a, \(y=Cosx\) trên đoạn \([-\dfrac{\pi}{2};\dfrac{\pi}{2}]\)
b, \(y=Sinx\) trên đoạn \([-\dfrac{\pi}{2};0]\)
a, Đồ thị hàm số \(y=cosx\): \(\left(A=\left(-\dfrac{\pi}{2};0\right);B=\left(\dfrac{\pi}{2};0\right)\right)\)
Dựa vào đồ thị ta có \(\left\{{}\begin{matrix}y_{min}=0\\y_{max}=1\end{matrix}\right.\)
b, Đồ thị hàm số \(y=sinx\): \(\left(A=\left(-\dfrac{\pi}{2};-1\right);A=\left(\dfrac{\pi}{2};1\right)\right)\)
tìm GTLN và GTNN cảu hàm số X+ căn2 cosX trên đoạn (0;π/2)
cần gấp
\(y'=1-\sqrt{2}\sin x=\dfrac{1}{\sqrt{2}}\Rightarrow x=\dfrac{\pi}{4}\\ y\left(0\right)=\sqrt{2};y\left(\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+1;y\left(\dfrac{\pi}{2}\right)=\dfrac{\pi}{2}\\ \Rightarrow y_{max}=y\left(\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+1\\ y_{min}=y\left(0\right)=\sqrt{2}\)
1)GTNN của hs y=x2+5/x-3 trên đoạn [3;6]
2)GTLN của hs y=sinx+căn3.cosx trên đoạn [0;bi]
3) Đk của m để pt x+căn1-x =m có nghiệm
Mn giúp mk vs ạ mk cảm ơn
Tìm GTLN, GTNN của hàm số y = sinx + cosx trên đoạn [ π/4 ; π/2 ]
Tìm GTLN và GTNN của hàm số : 1. y = sinx + 2cosx +1 / 2sinx + cosx + 3
2.y= 2sin^2sinx - 3 sinx cosx + cos^2 x
Giải phương trình : 1. 2sin^2 * 2x + sin7x -1 = sinx
2.cos 4x + 12 sin^2 x -1 = 0
Tìm GTLN, GTNN của hàm số :
a, y= x/2+ sin2x trên đoạn [-pi/2, pi/2]
b, y=sinx căn bậc hai cosx + cosx căn bậc hai sinx
b) Ta có:
\(y^2=\left(sinx\sqrt{cosx}+cosx\sqrt{sinx}\right)^2\le\left(sin^2x+cos^2x\right).\left(sinx+cosx\right)\)
(Áp dụng BĐT Bunhiacopxki)
\(\Leftrightarrow y^2\le sinx+cosx\Leftrightarrow y^2\le\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\le\sqrt{2}\) (Do \(sin\alpha\le1\)
\(\Rightarrow y\le\sqrt[4]{2}\)
Vậy max y = \(\sqrt[4]{2}\) \(\Leftrightarrow\dfrac{\sqrt{cosx}}{sinx}=\dfrac{\sqrt{sinx}}{cosx}\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi\) (k\(\in\)Z)
Hàm số không có giá trị nhỏ nhất.
1)GTNN của hs y=x2+5/x-3 trên đoạn [3;6]
2)GTLN của hs y=sinx+√3.cosx trên đoạn [0;π]
3) Đk của m để pt x+√1-x=m có nghiệm
Mn giúp mk vs ạ mk cảm ơn
1/
\(y=\frac{x^2+5}{x-3}\Rightarrow y'=\frac{2x\left(x-3\right)-\left(x^2+5\right)}{\left(x-3\right)^2}=\frac{x^2-6x-5}{\left(x-3\right)^2}< 0\) ; \(\forall x\in\left[3;6\right]\)
Hàm nghịch biến trên đoạn đã cho nên \(y_{min}=y\left(6\right)=\frac{41}{3}\)
2.
\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=2sin\left(x+\frac{\pi}{3}\right)\)
\(\Rightarrow y'=2cos\left(x+\frac{\pi}{3}\right)=0\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\frac{\pi}{6}+k\pi\Rightarrow x=\frac{\pi}{6}\)
\(y\left(0\right)=\sqrt{3}\) ; \(y\left(\pi\right)=-\sqrt{3}\) ; \(y\left(\frac{\pi}{6}\right)=2\) \(\Rightarrow y_{max}=y\left(\frac{\pi}{6}\right)=2\)
3.
ĐKXĐ: \(x\le1\)
Đặt \(\sqrt{1-x}=t\ge0\Rightarrow x=1-t^2\)
Pt trở thành: \(1-t^2+t=m\Leftrightarrow-t^2+t+1=m\)
Xét \(f\left(t\right)=-t^2+t+1\Rightarrow f'\left(t\right)=-2t+1=0\Rightarrow t=\frac{1}{2}\)
\(f\left(\frac{1}{2}\right)=\frac{11}{8}\Rightarrow f\left(t\right)\le\frac{11}{8}\Rightarrow m\le\frac{11}{8}\)
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
cho điểm A (-4,-2) đường tròn (C) (x-3)^2+(y+4)^2=12 đường thẳng d x+y-6=0. M là điểm di động trên (C). Tìm GTLN,GTNN của đoạn MA
Tìm GTLN, GTNN của hàm số y=cos2x+cosx-1
Đặt ẩn rồi xét sự biến thiên thôi
\(\cos x=t;t\in\left[-1;1\right]\)
\(\Rightarrow y=t^2+t-1\)
\(f\left(-1\right)=\left(-1\right)^2-1-1=-1\)
\(f\left(1\right)=1+1-1=1\)
\(f\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-\frac{1}{2}-1=-\frac{5}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}y_{max}=f\left(1\right)=1\\y_{min}=f\left(-\frac{1}{2}\right)=-\frac{5}{4}\end{matrix}\right.\)
Tự xét dấu bằng nhó