Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kolima
Xem chi tiết
Linh Nguyen
Xem chi tiết
Nguyễn Thanh Hằng
3 tháng 8 2020 lúc 16:43

a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)

\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)

\(=3\sqrt{3}\)

Vậy..

Nguyễn Thanh Hằng
3 tháng 8 2020 lúc 16:45

b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)

\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)

\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

Vậy..

Dương Thanh Ngân
Xem chi tiết
Tiên Hồ Đỗ Thị Cẩm
Xem chi tiết
Hiệp sĩ ánh sáng ( Boy l...
9 tháng 7 2019 lúc 10:34

a) Ta có:

5√15+12√20+√5515+1220+5

=√52.15+√(12)2.20+√5=√25.15+√14.20+√5=√255+√204+√5=√5+√5+√5=(1+1+1)√5=3√5=52.15+(12)2.20+5=25.15+14.20+5=255+204+5=5+5+5=(1+1+1)5=35

b)  Ta có: 

√12+√4,5+√12,512+4,5+12,5

=√12+√92+√252=√12+√9.12+√25.12=√12+√32.12+√52.12=√12+3√12+5√12=(1+3+5).√12=9√12=91√2=9.√22=9√22=12+92+252=12+9.12+25.12=12+32.12+52.12=12+312+512=(1+3+5).12=912=912=9.22=922

c) Ta có:

√20−√45+3√18+√72=√4.5−√9.5+3√9.2+√36.2=√22.5−√32.5+3√32.2+√62.2=2√5−3√5+3.3√2+6√2=2√5−3√5+9√2+6√2=(2√5−3√5)+(9√2+6√2)=(2−3)√5+(9+6)√2=−√5+15√2=15√2−√520−45+318+72=4.5−9.5+39.2+36.2=22.5−32.5+332.2+62.2=25−35+3.32+62=25−35+92+62=(25−35)+(92+62)=(2−3)5+(9+6)2=−5+152=152−5

d) Ta có:

0,1√200+2√0,08+0,4.√50=0,1√100.2+2√0,04.2+0,4√25.2=0,1√102.2+2√0,22.2+0,4√52.2=0,1.10√2+2.0,2√2+0,4.5√2=1√2+0,4√2+2√2=(1+0,4+2)√2=3,4√2



 

Tiên Hồ Đỗ Thị Cẩm
9 tháng 7 2019 lúc 10:40

Bạn giải bài đâu vậy? Kiếm điểm hỏi đáp hở, Boy anime?

Mất nick đau lòng con qu...
9 tháng 7 2019 lúc 12:30

1) \(=\frac{2\sqrt{3}}{\sqrt{20}}+\frac{1}{\sqrt{60}}-\frac{1}{\sqrt{15}}=\frac{6\sqrt{60}+\sqrt{60}-4\sqrt{15}}{60}=\frac{\sqrt{15}\left(12+2-4\right)}{60}=\frac{\sqrt{15}}{6}\)

a) \(=\frac{9}{\sqrt{3}}=\frac{9\sqrt{3}}{3}\)

b) \(=\frac{12\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\frac{36+12\sqrt{3}}{9-3}=6+2\sqrt{3}\)

c) \(=\frac{\left(\sqrt{2}+1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{2+2\sqrt{2}+1}{2-1}=3+2\sqrt{2}\)

d) \(=\frac{\left(7\sqrt{3}-5\sqrt{11}\right)\left(8\sqrt{3}+7\sqrt{11}\right)}{\left(8\sqrt{3}-7\sqrt{11}\right)\left(8\sqrt{3}+7\sqrt{11}\right)}=\frac{217-9\sqrt{11}}{347}\)

e) \(=\frac{\left(1-a\sqrt{a}\right)\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}=\frac{1+\sqrt{a}-a\sqrt{a}-a^2}{1-a}=a+\sqrt{a}+1\)

f) \(=\frac{1}{3\sqrt{2}-2\sqrt{2}+\sqrt{8}}=\frac{\sqrt{2}-\sqrt{8}}{\left(\sqrt{2}+\sqrt{8}\right)\left(\sqrt{2}-\sqrt{8}\right)}=\frac{\sqrt{2}}{6}\)

g) \(=\frac{1-\sqrt{2}+\sqrt{3}}{1-\left(\sqrt{2}-\sqrt{3}\right)^2}=\frac{1-\sqrt{2}+\sqrt{3}}{2\sqrt{6}-4}=\frac{\left(1-\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{6}+4\right)}{\left(2\sqrt{6}-4\right)\left(2\sqrt{6}+4\right)}\)

\(=\frac{2\sqrt{6}+4-4\sqrt{3}-4\sqrt{2}+6\sqrt{2}+4\sqrt{3}}{24-16}=\frac{\sqrt{2}+\sqrt{6}+2}{4}\)

f) \(=\frac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}=\frac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{2\sqrt{15}-6}\)

\(=\frac{\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{15}+6\right)}{\left(2\sqrt{15}-6\right)\left(2\sqrt{15}+6\right)}=\frac{2\sqrt{30}+6\sqrt{2}-6\sqrt{5}-6\sqrt{3}+10\sqrt{3}+6\sqrt{5}}{60-36}\)

\(=\frac{\sqrt{30}+3\sqrt{2}+2\sqrt{3}}{12}\)

Hoàng my
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 20:56

Câu 1: A

Câu 2: B

Câu 3: C

Thiên Yết
Xem chi tiết
N Q T
5 tháng 8 2019 lúc 14:38

a) \(\frac{3}{\sqrt{5}}=\frac{3\sqrt{5}}{\sqrt{5}.\sqrt{5}}=\frac{3\sqrt{5}}{5}\)

\(\frac{2\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)

\(\frac{a}{\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}.\sqrt{b}}=\frac{a\sqrt{b}}{b}\)

\(\frac{x+1}{\sqrt{x^2-1}}=\frac{\left(x+1\right)\left(\sqrt{x^2-1}\right)}{\left(\sqrt{x^2-1}\right)\left(\sqrt{x^2-1}\right)}\) = \(\frac{\left(\sqrt{x^2-1}\right)\left(x+1\right)}{x^2-1}\)

N Q T
5 tháng 8 2019 lúc 14:39

bạn làm tương tự nha

N Q T
5 tháng 8 2019 lúc 20:42

câu c chắc là như này

\(\frac{1}{1+\sqrt{2}+\sqrt{3}}=1+\frac{1}{\sqrt{2}+\sqrt{3}}\) = \(1+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\)

= \(1+\frac{\sqrt{2}-\sqrt{3}}{2-3}=1+\frac{\sqrt{2}-\sqrt{3}}{-1}\) = \(1-\sqrt{2}+\sqrt{3}\)

Hoàng Phú Lợi
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2023 lúc 21:23

1:

a: \(\sqrt{25}+\sqrt{49}=5+7=12\)

b: \(\sqrt{121}-\sqrt{81}=11-9=2\)

2: x>-2

=>2x>-4

=>2x+1>-3

=>Với x>-2 thì \(\sqrt{2x+1}\) chưa chắc có nghĩa

3:

a: \(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(=\left|\sqrt{3}-1\right|-\sqrt{3}\)

\(=\sqrt{3}-1-\sqrt{3}=-1\)

b: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)

\(=\left(3\sqrt{7}-2\sqrt{14}\right)\cdot\sqrt{7}+14\sqrt{2}\)

\(=21-14\sqrt{2}+14\sqrt{2}=21\)

c:

\(\dfrac{\sqrt{27}-\sqrt{108}+\sqrt{12}}{\sqrt{3}}\)

\(=\dfrac{3\sqrt{3}-6\sqrt{3}+2\sqrt{3}}{\sqrt{3}}=3+2-6=-1\)

Lê Thị Nhật Quỳnh
Xem chi tiết
Ngô Chi Lan
28 tháng 9 2020 lúc 17:51

Xét phân thức phụ sau, với n nguyên dương lớn hơn 1 ta có:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}\right)^2\sqrt{n}}=2\left(\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}\right)\sqrt{n}}\right)\)

\(=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

=> \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được:

\(A=2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\right)\)

\(A=2-\frac{2}{\sqrt{2020}}< 2=B\)

Vậy A < B

Khách vãng lai đã xóa
Ngô Hải Yến
Xem chi tiết