Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thiên Yết

trục căn thức ở mẫu :

a,\(\frac{3}{\sqrt{5}};\frac{2\sqrt{3}}{\sqrt{2}};\frac{a}{\sqrt{b}};\frac{x+1}{\sqrt{x^2-1}}\)

b,\(\frac{1}{\sqrt{3}+\sqrt{2}};\frac{2}{2-\sqrt{3}};\frac{\sqrt{2}+1}{\sqrt{2}-1};\frac{3\sqrt{2}}{\sqrt{3}+1}\)

c,\(\frac{1}{1+\sqrt{2}+\sqrt{3}}\)

d,\(\frac{1}{\sqrt{2\sqrt{3}-\sqrt{2}}.\sqrt{2}.\sqrt{\sqrt{2}+\sqrt{3}}}\)

N Q T
5 tháng 8 2019 lúc 14:38

a) \(\frac{3}{\sqrt{5}}=\frac{3\sqrt{5}}{\sqrt{5}.\sqrt{5}}=\frac{3\sqrt{5}}{5}\)

\(\frac{2\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)

\(\frac{a}{\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}.\sqrt{b}}=\frac{a\sqrt{b}}{b}\)

\(\frac{x+1}{\sqrt{x^2-1}}=\frac{\left(x+1\right)\left(\sqrt{x^2-1}\right)}{\left(\sqrt{x^2-1}\right)\left(\sqrt{x^2-1}\right)}\) = \(\frac{\left(\sqrt{x^2-1}\right)\left(x+1\right)}{x^2-1}\)

N Q T
5 tháng 8 2019 lúc 14:39

bạn làm tương tự nha

N Q T
5 tháng 8 2019 lúc 20:42

câu c chắc là như này

\(\frac{1}{1+\sqrt{2}+\sqrt{3}}=1+\frac{1}{\sqrt{2}+\sqrt{3}}\) = \(1+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\)

= \(1+\frac{\sqrt{2}-\sqrt{3}}{2-3}=1+\frac{\sqrt{2}-\sqrt{3}}{-1}\) = \(1-\sqrt{2}+\sqrt{3}\)


Các câu hỏi tương tự
Thiên Yết
Xem chi tiết
Linh Nguyen
Xem chi tiết
trâm lê
Xem chi tiết
Nguyenn Anhh
Xem chi tiết
WonMaengGun
Xem chi tiết
Thiên Yết
Xem chi tiết
Trần Thanh
Xem chi tiết
Bùi Quang Minh
Xem chi tiết
bui pham phuong Uyen
Xem chi tiết