giải phương trình
\(\frac{1}{tanx+cot2x}=\frac{\sqrt{2}\left(cosx-sinx\right)}{cotx-1}\)
rút gọn các biểu thức lượng giác sau:
\(\frac{sin^2x}{cosx\left(1+tanx\right)}-\frac{cos^2x}{sinx\left(1+cotx\right)}=sinx-cosx\)
\(\left(tanx+\frac{cosx}{1+sinx}\right)\left(cotx+\frac{sinx}{1+cosx}\right)=\frac{1}{sinx.cosx}\)
đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:
\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)
\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)
\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)
\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)
GPT : \(\dfrac{1}{sinx+cot2x}=\dfrac{\sqrt{2}.\left(cosx-sinx\right)}{cotx-1}\)
giải phương trình sau:
a,\(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}=0\)
b,\(\frac{\left(1+sinx+cos2x\right)sinx\left(x+\frac{\pi}{4}\right)}{1+tanx}=\frac{1}{\sqrt{2}}cosx\)
c,\(\frac{\left(1-sin2x\right)cosx}{\left(1+sin2x\right)\left(1-sinx\right)}=\sqrt{3}\)
d,\(\frac{1}{sinx}+\frac{1}{sin\left(x-\frac{3\pi}{2}\right)}=4sin\left(\frac{7\pi}{4}-x\right)\)
giải các phương trình sau:
a, \(\sqrt{3}sinx+cosx=\frac{1}{cosx}\)
b,\(3tan^2x\left(x-\frac{\pi}{2}\right)=2\left(\frac{1-sinx}{sinx}\right)\)
c,\(1+sinx+cosx+tanx=0\)
d,\(\frac{1}{cosx}+\frac{1}{sinx}=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
1) Đơn giản biểu thức : \(A=\frac{\left(sinx+cosx\right)^2-1}{cotx-sinx.cosx}\)
2) Đơn giản biểu thức : \(N=\left(\frac{sinx+tanx}{cosx+1}\right)^2+1\)
\(A=\frac{sin^2x+cos^2x+2sinx.cosx-1}{\frac{cosx}{sinx}-sinx.cosx}=\frac{2sinx^2x.cosx}{cosx-sin^2x.cosx}=\frac{2sin^2x.cosx}{cosx\left(1-sin^2x\right)}\)
\(=\frac{2sin^2x}{1-sin^2x}=\frac{2sin^2x}{cos^2x}=2tan^2x\)
\(N=\left(\frac{sinx+\frac{sinx}{cosx}}{cosx+1}\right)^2+1=\left(\frac{sinx.cosx+sinx}{cosx\left(cosx+1\right)}\right)^2+1\)
\(=\left(\frac{sinx\left(cosx+1\right)}{cosx\left(cosx+1\right)}\right)^2+1=tan^2x+1=\frac{1}{cos^2x}\)
Tìm tập xác đinh của các hàm số sau
29 , \(y=\frac{tanx+cosx}{sinx}\)
30 , \(y=\frac{1}{sinx}-\frac{1}{cosx}\)
31 , \(y=\frac{cosx+cotx}{sinx}\)
32 , \(y=\frac{tanx+cotx}{1-sin2x}\)
33 , \(y=tanx+\frac{1}{cos\frac{x}{2}}\)
34 , \(y=\frac{1-tanx}{1-cotx}\)
35 , \(y=\frac{cotx}{cosx-1}\)
36 , \(y=\frac{3}{sin^2x-cos^2x}\)
37 , \(y=\frac{2}{cosx-cos3x}\)
38 , \(y=\frac{\sqrt{x}}{sin\pi x}\)
39 , \(y=\frac{2-cosx}{1+tan\left(x-\frac{\pi}{3}\right)}\)
ĐKXĐ:
29.
\(\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow sinx.cosx\ne0\)
\(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\frac{k\pi}{2}\)
30.
\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\) (như câu trên)
31.
\(sinx\ne0\Leftrightarrow x\ne k\pi\)
32.
\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\sin2x\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\sin2x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
33.
\(\left\{{}\begin{matrix}cosx\ne0\\cos\frac{x}{2}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)
34.
\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\cotx\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{4}+k\pi\end{matrix}\right.\)
35.
\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\)
\(\Leftrightarrow x\ne k\pi\)
36.
\(sin^2x-cos^2x\ne0\Leftrightarrow cos2x\ne0\)
\(\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
37.
\(cos3x\ne cosx\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)
38.
\(\left\{{}\begin{matrix}x\ge0\\sin\pi x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\pi x\ne k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne k\end{matrix}\right.\)
39.
\(\left\{{}\begin{matrix}cos\left(x-\frac{\pi}{3}\right)\ne0\\tan\left(x-\frac{\pi}{3}\right)\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\\x-\frac{\pi}{3}\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{5\pi}{6}+k\pi\\x\ne-\frac{\pi}{12}+k\pi\end{matrix}\right.\)
Chứng minh đẳng thức sau :
a, \(\left(\frac{tan^2x-1}{2tanx}\right)^2\) - \(\frac{1}{4sin^2x.cos^2x}\) = -1
b, \(\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}\) = 1 + tan2x
c, \(\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cotx\right)}=sinx-cosx\)
d, \(\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\frac{1}{sinx.cosx}\)
e, cos2x.(cos2x + 2sin2x + sin2x.tan2x) = 1
\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)
\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)
b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)
=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)
d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)
\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)
=\(\frac{1}{cosx.sinx}=VP\)
e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)
c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)
=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)
\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)
Đây nha bạn
Giải phương trình
tanx+cotx = \(\sqrt{2}\left(sinx+cosx\right)\)
ĐKXĐ: \(x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow\frac{sinx}{cosx}+\frac{cosx}{sinx}=\sqrt{2}\left(sinx+cosx\right)\)
\(\Leftrightarrow\frac{1}{sinx.cosx}=\sqrt{2}\left(sinx+cosx\right)\Leftrightarrow\left(sinx+cosx\right)sinx.cosx=\frac{\sqrt{2}}{2}\)
Đặt \(sinx+cosx=a\) \(\left(\left|a\right|\le\sqrt{2}\right)\)
\(\Rightarrow a^2=1+2sinx.cox\Rightarrow sinx.cosx=\frac{a^2-1}{2}\) pt trở thành:
\(\left(a^2-1\right)a=\sqrt{2}\Leftrightarrow a^3-a-\sqrt{2}=0\)
\(\Leftrightarrow\left(a-\sqrt{2}\right)\left(a^2+a\sqrt{2}+1\right)=0\Rightarrow a=\sqrt{2}\)
\(\Rightarrow sinx+cosx=\sqrt{2}\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\Rightarrow sin\left(x+\frac{\pi}{4}\right)=1\)
\(\Rightarrow...\)
Giải phương trình
1.\(\frac{\left(2sinx+1\right).\left(3cos4x+2sinx\right)+4cos^2x+1}{1+sinx}=8\)
2.\(\frac{\left(1+sinx+cos2x\right).sin\left(x+\frac{\pi}{4}\right)}{1+tanx}=\frac{1}{\sqrt{2}}cosx\)
a/ ĐKXĐ: \(sinx\ne-1\)
\(\Leftrightarrow\left(2sinx+1\right)\left(3cos4x+2sinx\right)+4cos^2x+1=8+8sinx\)
\(\Leftrightarrow6sinx.cos4x+4sin^2x+3cos4x+2sinx+4cos^2x+1=8+8sinx\)
\(\Leftrightarrow6sinx.cos4x+3cos4x-6sinx-3=0\)
\(\Leftrightarrow6sinx\left(cos4x-1\right)+3\left(cos4x-1\right)=0\)
\(\Leftrightarrow\left(6sinx+3\right)\left(cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\cos4x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\1-2sin^22x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sin^2x\left(1-sin^2x\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sin^2x\left(1+sinx\right)\left(1-sinx\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=0\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\\x=k\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
b/ ĐKXĐ: \(\left\{{}\begin{matrix}tanx\ne-1\\cosx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left(1+sinx+cos2x\right).\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=cosx\left(1+\frac{sinx}{cosx}\right)\)
\(\Leftrightarrow\left(1+sinx+cos2x\right)\left(sinx+cosx\right)=cosx+sinx\)
\(\Leftrightarrow\left(cosx+sinx\right)\left(sinx+cos2x\right)=0\)
\(\Leftrightarrow sinx+cos2x=0\)
\(\Leftrightarrow-2sin^2x+sinx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(l\right)\\sinx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)