Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tang Khanh Hung
Xem chi tiết
ミ★Ƙαї★彡
11 tháng 9 2020 lúc 22:41

Đặt \(2x^2+3x=t\)ta có : 

\(2\left(t+\frac{7}{2}\right)+\sqrt{t+9}=15\)

\(\Leftrightarrow2t+7+\sqrt{t+9}=15\)

\(\Leftrightarrow\sqrt{t+9}=8-2t\)

Bình phương 2 vế : \(t+9=4t^2-32t+64\)

\(\Leftrightarrow-4t^2+33t-55=0\)

Ta có : \(\Delta=33^2-4.\left(-4\right).\left(-55\right)=209\)

\(x_1=\frac{-33-\sqrt{209}}{-8};x_2=\frac{-33+\sqrt{209}}{-8}\)

Khách vãng lai đã xóa
Trí Tiên
11 tháng 9 2020 lúc 22:48

Bài này nghiệm khá xấu mình gợi ý nhé !

ĐKXĐ : \(x\inℝ\)

Pt ban đầu có thể viết lại :

\(2.\left(2x^2+3x+9\right)+2\sqrt{2x^2+3x+9}=26\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>0\right)\)

Pt trên trở thành :

\(2.a^2+2a=26\)

\(\Leftrightarrow a^2+a-13=0\)

\(\Leftrightarrow a=\frac{-1\pm\sqrt{53}}{2}\)

Từ đây thì dễ dàng tính được x nhưng kết quả rất xấu.....

Khách vãng lai đã xóa
ミ★Ƙαї★彡
11 tháng 9 2020 lúc 22:52

KL lại : \(t_1=\frac{-33-\sqrt{209}}{-8};t_2=\frac{-33+\sqrt{209}}{-8}\)

Khách vãng lai đã xóa
Lê Thu Hiền
Xem chi tiết
:vvv
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 8 2021 lúc 20:11

ĐKXĐ: \(x\ne-1\)

\(\dfrac{6x^2+4x+8}{x+1}=5\sqrt{2x^2+3}\)

\(\Rightarrow6x^2+4x+8=5\left(x+1\right)\sqrt{2x^2+3}\)

\(\Leftrightarrow2\left(2x^2+3\right)-5\left(x+1\right)\sqrt{2x^2+3}+2\left(x+1\right)^2=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3}=a\\x+1=b\end{matrix}\right.\)

\(\Rightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x^2+3}=2\left(x+1\right)\\2\sqrt{2x^2+3}=x+1\end{matrix}\right.\) (\(x\ge-1\))

\(\Rightarrow\left[{}\begin{matrix}2x^2+3=4\left(x+1\right)^2\\4\left(2x^2+3\right)=\left(x+1\right)^2\end{matrix}\right.\) (\(x\ge-1\))

\(\Leftrightarrow...\)

Đức Lưu Quang
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
tth_new
15 tháng 9 2019 lúc 18:24

Ko chắc nhá, lúc làm chả biết có tính nhầm chỗ nào ko nữa:) Vả lại bài này chưa khảo lại bài đâu đấy, lười khảo lại lắm, đăng lên luôn.

a) ĐK: \(x\ge-\frac{1}{4}\)

PT \(\Leftrightarrow4x^2+4x+1-2\sqrt{4x+1}+1=0\)

\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)

b) ĐK: \(x\ge-\frac{1}{2}\)

PT \(\Leftrightarrow\left(x^2-8x+16\right)+2x+1-6\sqrt{2x+1}+9=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{2x+1}-3\right)^2=0\)

c) ĐK: \(x\ge-1\)

PT có một nghiệm xấu @@ chưa nghĩ ra, có lẽ phải dùng liên hợp.

d) Số bự quá:( Nhưng thôi vì nghiệm đẹp nên vẫn làm:D

\(PT\Leftrightarrow\left(x^2-2x+1\right)+\left(2017x-2016-2\sqrt{2017x-2016}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

e)Nghiệm đẹp nhưng dạng phân thức -> ko muốn làm:D

f) Liên hợp đi cho nó khỏe:v

tth_new
15 tháng 9 2019 lúc 18:40

f) Liên hợp đi cho nó khỏe:D

ĐK: \(x\ge\frac{1}{5}\)

PT \(\Leftrightarrow2x^2-6x+4+\left(x+1\right)-\sqrt{5x-1}=0\)

\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)+\frac{\left(x-2\right)\left(x-1\right)}{x+1+\sqrt{5x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left[2+\frac{1}{x+1+\sqrt{5x-1}}\right]=0\)

Cái ngoặc to nhìn liếc qua một phát cũng thấy nó vô nghiệm.

Nguyễn Ngọc Ni
Xem chi tiết
Nào Ai Biết
12 tháng 7 2018 lúc 17:43

\(\sqrt{x^2+2x+5}=-x^2-2x+1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

Ta thấy :

\(-\left(x+1\right)^2+2\le2\) Với \(\forall x\in R\)

\(\sqrt{\left(x+1\right)^2+4}\ge2\) Với \(\forall x\in R\)

\(\Rightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\) Khi x + 1 = 0 \(\Leftrightarrow\) x = -1

Vậy Phương trình có nghiệm x = -1 .

Nào Ai Biết
12 tháng 7 2018 lúc 17:52

\(\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta thấy :

\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\) \(\ge1\) Với \(\forall x\in R\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\ge3\) Với \(\forall x\in R\)

\(-x^2+6x-5=-\left(x-3\right)^2+4\le4\) Với \(\forall x\in R\)

\(\Rightarrow VT\ge4\) ; \(VP\le4\)

\(\Rightarrow VT=VP=4\)

Dấu "=" xảy ra khi x - 3 = 0 \(\Leftrightarrow\) x = 3

Vậy phương trình có nghiệm x = 3 .

Phùng Khánh Linh
12 tháng 7 2018 lúc 17:53

\(a.\sqrt{x^2+2x+5}=-x^2-2x+1\)

Ta có : \(VT=\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\)\(2\)

\(VP=-x^2-2x+1=-\left(x^2+2x+1\right)+2=-\left(x+1\right)^2+2\)\(2\)

Để : \(\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

\(x=-1\)

KL...........

\(b.\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta có : \(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\text{≥}1\left(1\right)\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\text{≥}3\left(2\right)\)

\(-x^2+6x-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\text{≥}4\left(3\right)\)

Từ ( 1 ; 2 ) , ta có :
\(\sqrt{\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\text{≥}4\left(4\right)\)

Từ ( 3 ; 4 ) để : \(\sqrt{\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}=-\left(x-3\right)^2+4\)

\(x=3\)

KL..........

Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Bưu Ca
Xem chi tiết
Big City Boy
Xem chi tiết