Bài 4: Chứng minh các hằng đẳng thức sau
a. x2+y2=(x+ y)2- 2xy
b. (a+b)2-(a-b)(a+b)= 2b(a+b)
Chứng minh các đẳng thức sau:
a) x 2 + y 2 = ( x + y ) 2 – 2 xy ;
b) ( a + b ) 2 – (a – b)(a + b) = 2b(a + b).
chứng minh hằng đẳng thức sauu:
(a+b)2-(a-b)2:4=ab
2(x2+y2)=(x+y)2+(x-y)2
\(\dfrac{\left(a+b\right)^2-\left(a-b\right)^2}{4}=\dfrac{a^2+2ab+b^2-a^2+2ab-b^2}{4}=\dfrac{4ab}{4}=ab\left(đpcm\right)\)
\(\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2\left(x^2+y^2\right)\left(dpcm\right)\)
Chứng minh các đẳng thức sau:
a) ( a + b ) 2 − ( a − b ) 2 4 = ab ;
b) 2 ( x 2 + y 2 ) = ( x + y ) 2 + ( x – y ) 2 .
a) VT = ( a + b + a − b ) ( a + b − a + b ) 4 = 2 a . 2 b 4 = 4 = VP => đpcm.
b) VP = x 2 + 2 xy + y 2 + x 2 – 2 xy + y 2 = 2 ( x 2 + y 2 ) = VT => đpcm.
Bài 1:Chứng minh các hằng đẳng thức sau:
a) a^6+b^6=(a^2+b^2)[(a^2+b^2)^2-3a^2b^2]
b) a^6-b^6=(a^2-b^2)[(a^2+b^2)^2-a^2b^2]
Bài 2: Chứng minh rằng các đa thức sau ko âm với bất kì giá trị nào của các chữ:
a) x^2+y^2-2xy+x-y+1
b) 2x^2+9y^2+3z^2+6xy-2xz+6yz
c)8x^2+y^2+11z^2+4xy-12xz-5yz
d)5x^2+5y^2+5z^2+6xy-8xz-8yz
_Giúp mình nha mấy cậu .Iu các cậu nhìu.
Chứng minh các đẳng thức sau
a)(a-b)2=(a+b)2-4ab
b)(x+y)2+(x-y)2=2(x2+y2)
a) Ta có:
\(VT=\left(a-b\right)^2\)
\(=a^2-2ab+b^2\)
\(=a^2+2ab+b^2-4ab\)
\(=\left(a+b\right)^2-4ab=VP\left(dpcm\right)\)
b) Ta có:
\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=\left(x^2+y^2\right)+\left(x^2+y^2\right)\)
\(=2\left(x^2+y^2\right)=VP\left(dpcm\right)\)
Bài 10 : Rút gọn các biểu thức
a. A = ( x + 2 ) ( x2 - 2x + 4 ) - x3 + 2
b . B = ( x - 1 ) ( x2 + x + 1 ) - ( x + 1 ) ( x2 - x + 1 )
c. C = ( 2x - y ) ( 4x2 + 2xy + y2 ) + ( y - 3x ) ( y2 + 3xy + 9x2 )
a) \(A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)
\(A=x^3+8-x^3+2\)
\(A=10\)
b) \(B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(B=x^3-1-\left(x^3+1\right)\)
\(B=x^3-1-x^3-1\)
\(B=-2\)
c) \(C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)
\(C=\left(2x\right)^3-y^3+y^3-\left(3x\right)^3\)
\(C=8x^3-y^3+y^3-27x^3\)
\(C=-19x^3\)
a)
\(A=\left(x+2\right)\left(x-2\right)\left(x-2\right)-x^3+2\\ =\left(x^2-4\right)\left(x-2\right)-x^3+2\\ =x^3-2x^2-4x+8-x^3+2\\ =-2x^2-4x+10\)
b)
\(B=x^3-1-\left(x^3+1\right)\\ =x^3-1-x^3-1\\ =-2\)
c)
\(C=\left(2x\right)^3-y^3+\left(y\right)^3-\left(3x\right)^3\\ =8x^3-y^3+y^3-27x^3\\ =-19x^3\)
Bài 1 , Khai triển các hằng đẳng thức sau :
a , ( x + 2 )2 b, ( x - 1 )2 c, ( x2+ y2 )2
\(a,\left(x+2\right)^2=x^2+4x+4\\ b,\left(x-1\right)^2=x^2-2x+1\\ c,\left(x^2+y^2\right)^2=x^4+2x^2y^2+y^4\)
a) = x2 + 4x + 4
b) = x2 - 2x + 1
c) x4 + 2x2y2 + y4
Bài 8 : Chứng minh các đẳng thức sau
a. ( a2 - 1 )2 + 4a2 = ( a2 + 1 )2
b. ( x - y ) + ( x + y ) 2 + 2(x2 - y2 ) = 4x2
\(a,VT=\left(a^2-1\right)^2+4a^2\\ =a^4-2a^2+1+4a^2\\ =a^4+2a^2+1\\ =\left(a^2+1\right)^2 =VP\\ b,VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\\ =x^2-2xy+y^2+x^2+y^2+2xy+2x^2-2y^2\\ =4x^2=VP\)
Chứng minh đẳng thức sau :
a) \(x^2+y^2=\left(x+y\right)^2-2xy\)
b)\(\left(a+b\right)^2-\left(a-b\right)\cdot\left(a+b\right)=2b\left(a+b\right)\)
c)\(\left(a+b\right)^2-\left(a-b\right)^2=ab\)
a) \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)
b) \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)=\left(a+b\right)^2-\left(a^2-b^2\right)=a^2+2ab+b^2-a^2+b^2\)
\(=2ab+2b^2=2b\left(a+b\right)\)
c)\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=2b.2a=4ab\)
a: \(\left(x+y\right)^2-2xy\)
\(=x^2+2xy+y^2-2xy\)
\(=x^2+y^2\)
b: \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)\)
\(=\left(a+b\right)\left(a+b-a+b\right)\)
\(=2b\left(a+b\right)\)
c: \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=4ab\)