cos^2x + 2cos 2020x sinx-2=0
3sin^2x + 4sin2x +(8√3 -9) *cos^2x=0
sin^2 + sin2x - 2cos^2x =1/2
(sinx +1) *( 2cos 2x - 2) =0
giải hộ e bài này vs ạ
a/
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)
\(\Leftrightarrow3tan^2x+8tanx+8\sqrt{3}-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\sqrt{3}\\tanx=\frac{3\sqrt{3}-8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=arctan\left(\frac{3\sqrt{3}-8}{3}\right)+k\pi\end{matrix}\right.\)
b/
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(tan^2x+2tanx-2=\frac{1}{2}\left(1+tan^2x\right)\)
\(\Leftrightarrow tan^2x+4tanx-5=0\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-5\right)+k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(sinx+1\right)\left(1-2sin^2x-1\right)=0\)
\(\Leftrightarrow sin^2x\left(sinx+1\right)=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
Giải PT
a) sin2 x + 2sinx - 3 = 0
b) 2cos x + cos 2x = 0
c) tanx + cotx + 2 = 0
d) sinx + cos2x + 1 = 0
e) tan x + cot 2x = 0
a) TH1: sinx = 1
--> x = pi/2 + k2pi (k nguyên)
TH2: sinx = -3 (loại)
b) 2cosx + cos2x = 0
<=> 2cosx + 2cos^2(x) - 1 = 0
TH1: cosx = (-1 + sqrt(3))/2
TH2: cosx = (-1 - sqrt(3))/2 (loại)
c) ĐKXĐ: x # kpi
Pt <=> tanx + 1/tanx + 2 = 0
--> tanx = -1
--> x = -pi/4 + kpi (k nguyên)
\(\dfrac{sinx+cosx}{sinx}=\dfrac{sinx+cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}}{2cos\dfrac{x}{2}sin\dfrac{x}{2}}\)
\(0< x< 90\), chứng minh
\(cosx=cos2.\left(\dfrac{x}{2}\right)=cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}\)
\(sinx=sin2\left(\dfrac{x}{2}\right)=2sin\dfrac{x}{2}cos\dfrac{x}{2}\)
\(\Rightarrow\dfrac{sinx+cosx}{sinx}=\dfrac{sinx+cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}}{2sin\dfrac{x}{2}cos\dfrac{x}{2}}\)
1,Giải phương trình:
a,\(cos^3x+sin^3x=cos2x\)
b,\(cos^3x+sin^3x=2sin2x+sinx+cosx\)
c,\(2cos^3x=sin3x\)
d,\(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
e,\(cos^3x+sin^3x=2\left(cos^5x+sin^5x\right)\)
a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)
b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x
⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x
⇔ 4sin2x + (sinx + cosx) . sin2x = 0
⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)
⇔ sin2x = 0
c, 2cos3x = sin3x
⇔ 2cos3x = 3sinx - 4sin3x
⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0
⇔ sin3x + 2cos3x - 3sinx.cos2x = 0
Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình
Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được :
tan3x + 2 - 3tanx = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x
⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1
⇔ cos2x - \(\sqrt{3}sin2x\) = 1
⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)
⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
e, cos3x + sin3x = 2cos5x + 2sin5x
⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0
⇔ cos3x . (- cos2x) + sin3x . cos2x = 0
⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)
\(sin\dfrac{x}{2}sinx-cos\dfrac{x}{2}sin^2x+1=2cos^2\left(\dfrac{pi}{4}-\dfrac{x}{2}\right)\)
\(sin\dfrac{x}{2}sinx-cos\dfrac{x}{2}sin^2x=2cos^2\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)-1\)
\(\Leftrightarrow sin\dfrac{x}{2}sinx-cos\dfrac{x}{2}sin^2x=cos\left(\dfrac{\pi}{2}-x\right)\)
\(\Leftrightarrow sin\dfrac{x}{2}sinx-cos\dfrac{x}{2}sin^2x=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sin\dfrac{x}{2}-cos\dfrac{x}{2}.sinx=1\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}.cos^2\dfrac{x}{2}=1\)
\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\left(1-sin^2\dfrac{x}{2}\right)=1\)
\(\Leftrightarrow2sin^3\dfrac{x}{2}-sin\dfrac{x}{2}-1=0\)
\(\Leftrightarrow\left(sin\dfrac{x}{2}-1\right)\left(2sin^2\dfrac{x}{2}+2sin\dfrac{x}{2}+1\right)=0\)
\(\Leftrightarrow sin\dfrac{x}{2}=1\Leftrightarrow...\)
giải các pt
a) \(3cos4x-8cos^6x+2cos^2x+3=0\)
b) \(4+3sinx+sin^3x=3cos^2x+cos^6x\)
c) \(2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=cos2x-3\)
d) \(\frac{\sqrt{3}}{cos^2x}-tanx-2\sqrt{3}=sinx\left(1+tanx.tan\frac{x}{2}\right)\)
a/
\(\Leftrightarrow3\left(cos4x+1\right)+2cos^2x\left(1-4cos^4x\right)=0\)
\(\Leftrightarrow3\left(2cos^22x-1+1\right)+2cos^2x\left(1-2cos^2x\right)\left(1+2cos^2x\right)=0\)
\(\Leftrightarrow6cos^22x+\left(1+cos2x\right).\left(-cos2x\right)\left(2+cos2x\right)=0\)
Đặt \(cos2x=a\)
\(\Rightarrow6a^2-a\left(a+1\right)\left(a+2\right)=0\)
\(\Leftrightarrow a\left(-a^2+3a-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\\cos2x=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow4+3sinx+sin^3x=3\left(1-sin^2x\right)+\left(1-sin^2x\right)^3\)
Đặt \(sinx=a\) ta được:
\(a^3+3a+4=3-3a^2+\left(1-a\right)^3\)
\(\Leftrightarrow a^3+3a^2+3a+1=\left(1-a\right)^3\)
\(\Leftrightarrow\left(a+1\right)^3=\left(1-a\right)^3\)
\(\Leftrightarrow a+1=1-a\)
\(\Leftrightarrow a=0\)
\(\Rightarrow sinx=0\Rightarrow x=k\pi\)
c/
ĐKXĐ: ...
\(\Leftrightarrow2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=2cos^2x-4\)
\(\Leftrightarrow2cos^2x+2cos^2x.tanx.tan\frac{x}{2}=2cos^2x-4\)
\(\Leftrightarrow cos^2x.tanx.tan\frac{x}{2}=-2\)
\(\Leftrightarrow sinx.cosx.tan\frac{x}{2}=-2\)
\(\Leftrightarrow sinx.cosx.\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=-2\)
\(\Leftrightarrow sinx.cosx.\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}.cos\frac{x}{2}}=-1\)
\(\Leftrightarrow cosx\left(\frac{1-cosx}{2}\right)=-1\)
\(\Leftrightarrow cos^2x-cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pi+k2\pi\)
1) Đơn giản biểu thức : \(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x\)
2)Đơn giản biểu thức : \(M=\frac{2cos^2x-1}{sinx+cosx}\)
\(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x=\frac{1}{cos^2x}-sin^2x-cos^2x\)
\(=1+tan^2x-\left(sin^2x+cos^2x\right)=1+tan^2x-1=tan^2x\)
\(M=\frac{2cos^2x-1}{sinx+cosx}=\frac{2cos^2x-\left(sin^2x+cos^2x\right)}{sinx+cosx}=\frac{cos^2x-sin^2x}{sinx+cosx}\)
\(\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}=cosx-sinx\)
8( sinx cos\(^3\)x - cos x sin\(^3\)x ) - 2cos\(^2\) 2x = 1
\(\Leftrightarrow8sinx.cosx\left(cos^2x-sin^2x\right)-\left(1+cos4x\right)=1\)
\(\Leftrightarrow4sin2x.cos2x-cos4x=2\)
\(\Leftrightarrow2sin4x-cos4x=2\)
\(\Leftrightarrow\frac{2}{\sqrt{5}}sin4x-\frac{1}{\sqrt{5}}cos4x=\frac{2}{\sqrt{5}}\)
\(\Leftrightarrow sin\left(4x+\alpha\right)=\frac{2}{\sqrt{5}}\)
\(\Leftrightarrow...\)
Nghiệm xấu quá, bạn tự giải nốt
Có bao nhiêu m nguyên để pt có nghiệm
a) \(sin^6x+cos^6x+3sinx.cosx-\dfrac{m}{4}+2=0\)
b) \(\left(sinx-1\right)\left[2cos^2x-\left(2m+1\right)cosx+m\right]=0\) có 4 nghiệm phân biệt \(\in\left[0;2\pi\right]\)
a) Pt\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2xcos^2x\left(sin^2x+cos^2x\right)+3sinx.cosx-\dfrac{m}{4}+2=0\)
\(\Leftrightarrow1-\dfrac{3}{4}sin^22x-\dfrac{3}{2}sin2x-\dfrac{m}{4}+2=0\)
\(\Leftrightarrow-3sin^22x-6sin2x-m+12=0\)
Đặt \(t=sin2x;t\in\left[-1;1\right]\)
Pttt: \(-3t^2-6t-m+12=0\)
\(\Leftrightarrow-3t^2-6t+12=m\) (1)
Đặt \(f\left(t\right)=-3t^2-6t+12;t\in\left[-1;1\right]\)
Vẽ BBT sẽ tìm được \(f\left(t\right)_{min}=3;f\left(t\right)_{max}=15\)\(\Leftrightarrow3\le f\left(t\right)\le15\)\(\Rightarrow m\in\left[3;15\right]\) thì pt (1) sẽ có nghiệm
mà \(m\in Z\) nên tổng m nguyên để pt có nghiệm là 13 m
Vậy có tổng 13 m nguyên
b) Pt\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(1\right)\\2cos^2x-\left(2m+1\right)cosx+m=0\left(2\right)\end{matrix}\right.\)
Từ (1)\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)
\(x\in\left[0;2\pi\right]\Rightarrow0\le\dfrac{\pi}{2}+k2\pi\le2\pi\)\(\Leftrightarrow-\dfrac{1}{4}\le k\le\dfrac{3}{4}\)\(\Rightarrow k=0\)
Tại k=0\(\Rightarrow x=\dfrac{\pi}{2}\)
Để pt ban đầu có 4 nghiệm pb \(\in\left[0;2\pi\right]\)
\(\Leftrightarrow\) Pt (2) có 3 nghiệm pb khác \(\dfrac{\pi}{2}\)
Xét pt (2) có: \(2cos^2x-\left(2m+1\right)cosx+m=0\)
Vì là phương trình bậc hai ẩn \(cosx\) nên pt (2) chỉ có nhiều nhất ba nghiệm \(\Leftrightarrow\) Pt (2) có một nghiệm cosx=0
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) mà \(x\ne\dfrac{\pi}{2}\)
\(\Rightarrow\) Pt (2) chỉ có nhiều nhất hai nghiệm
\(\Rightarrow\) Pt ban đầu không thể có 4 nghiệm phân biệt
Vậy \(m\in\varnothing\)