\(cos^4x-sin^4x=2cos^2x-1\)
1) Mệnh đề nào sau đây đúng : Giải thích và chứng minh
\(A.sin^4x-cos^4x=1-2cos^2x\)
B.\(sin^4x-cos^4x=1-2sin^2x.cos^2x\)
C.\(sin^4x-cos^4x=1-2sin^2x\)
D.\(sin^4x-cos^4x=2cos^2x-1\)
Trắc nghiệm thì chuyển hết sang vế trái, sau đó cho đại x 1 giá trị nào đó ko đẹp (ví dụ \(\frac{\pi}{5}\)) rồi dùng tính năng CALC để bấm, cái nào ra bằng 0 thì chọn (chọn x ko đẹp để loại trừ khả năng tình cờ đúng ở các giá trị đặc biệt)
Còn ko thì biến đổi từng con một:
a/ \(sin^4x-cos^4x=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)=sin^2x-cos^2x\)
\(=1-cos^2x-cos^2x=1-2cos^2x\) (đúng luôn)
Khỏi cần quan tâm các câu còn lại
cos^4x-sin^4x+2cos^2x
giải các pt
a) \(cos^4x-sin^4x=sin4x\)
b) \(2cos^2x-1=sin6x\)
c) \(2cos^2x-2=sinx.cos3x\)
d) \(cos^4x+sin^4x=1+\frac{1}{2}sin4x\)
\(\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=sin4x\)
\(\Leftrightarrow cos^2x-sin^2x=sin4x\)
\(\Leftrightarrow cos2x=sin4x=cos\left(\frac{\pi}{2}-4x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-4x+k2\pi\\2x=4x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{3}\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
\(2cos^2x-1=sin6x\)
\(\Leftrightarrow cos2x=sin6x=cos\left(\frac{\pi}{2}-6x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-6x+k2\pi\\2x=6x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{k\pi}{4}\\x=\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
\(2\left(cos^2x-1\right)=sinx.cos3x\)
\(\Leftrightarrow-2sin^2x=sinx.cos3x\)
\(\Leftrightarrow sinx.cos3x+2sin^2x=0\)
\(\Leftrightarrow sinx\left(cos3x+2sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos3x+2sinx=0\left(1\right)\end{matrix}\right.\)
Bạn có ghi nhầm đề ko nhỉ, pt (1) dù giải được nhưng khá khó đấy, phải vận dụng công thức nhân 3 và nghiệm ko hề đẹp
\(cos^4x+sin^4x=1+\frac{1}{2}sin4x\)
\(\Leftrightarrow\left(cos^2x+sin^2x\right)^2-2\left(sinx.cosx\right)^2=1+\frac{1}{2}sin4x\)
\(\Leftrightarrow1-\frac{1}{2}sin^22x=1+\frac{1}{2}sin4x\)
\(\Leftrightarrow sin4x+sin^22x=0\)
\(\Leftrightarrow2sin2x.cos2x+sin^22x=0\)
\(\Leftrightarrow sin2x\left(2cos2x+sin2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=0\Rightarrow x=\frac{k\pi}{2}\\2cos2x+sin2x=0\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow\frac{1}{\sqrt{5}}sin2x+\frac{2}{\sqrt{5}}cos2x=0\)
Đặt \(cosa=\frac{1}{\sqrt{5}}\) với \(a\in\left[0;\pi\right]\)
\(\Rightarrow sin2x.cosa+cos2x.sina=0\)
\(\Leftrightarrow sin\left(2x+a\right)=0\)
\(\Rightarrow2x+a=k\pi\Rightarrow x=-\frac{a}{2}+\frac{k\pi}{2}\)
a)sin^4\(\frac{x}{3}\) +cos^4\(\frac{x}{3}\)=\(\frac{5}{8}\)
b)4(sin^4x+cos^4x)+\(\sqrt{3}\)sin4x=2
c)cos^4x+sin^6x=cos2x
d)cos^6x+sin^6x=cos4x
2cos^2x+2cos^2x+4cos^3(2x)-3cos2x=5
a/
\(\Leftrightarrow\left(sin^2\frac{x}{3}+cos^2\frac{x}{3}\right)^2-2sin^2\frac{x}{3}.cos^2\frac{x}{3}=\frac{5}{8}\)
\(\Leftrightarrow1-\frac{1}{2}sin^2\frac{2x}{3}=\frac{5}{8}\)
\(\Leftrightarrow1-\frac{1}{4}\left(1-cos\frac{4x}{3}\right)=\frac{5}{8}\)
\(\Leftrightarrow cos\frac{4x}{3}=-\frac{1}{2}\)
\(\Leftrightarrow\frac{4x}{3}=\pm\frac{2\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\frac{\pi}{2}+\frac{k3\pi}{2}\)
b/
\(\Leftrightarrow4\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)
\(\Leftrightarrow4-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)
\(\Leftrightarrow-2sin^22x+\sqrt{3}sin4x=-2\)
\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-1\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin4x+\frac{1}{2}cos4x=-\frac{1}{2}\)
\(\Leftrightarrow sin\left(4x+\frac{\pi}{6}\right)=-\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{6}=-\frac{\pi}{6}+k2\pi\\4x+\frac{\pi}{6}=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+\frac{k\pi}{2}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
c/
\(\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)
\(\Leftrightarrow-cos^32x+5cos^22x-7cos2x+3=0\)
\(\Leftrightarrow\left(3-cos2x\right)\left(cos2x-1\right)^2=0\)
\(\Leftrightarrow cos2x=1\)
\(\Leftrightarrow x=k\pi\)
d/
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos4x\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=cos4x\)
\(\Leftrightarrow1-\frac{3}{8}\left(1-cos4x\right)=cos4x\)
\(\Leftrightarrow cos4x=1\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
\(\frac{1-sin^2cos^2x}{cos^2x}-cos^2x\) \(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4+4sin^2x}\)
a) cos^6x+sin^2x=1
b)cos^6x-sin^6x=13/18cos^2(2x)
c)cos^4x+sin^6x=cos2x
d)2cos^2(2x)+cos2x=4sin^2(2x) cos^2x
a/
\(cos^6x+sin^2x=1\)
\(\Leftrightarrow cos^6x-\left(1-sin^2x\right)=0\)
\(\Leftrightarrow cos^6x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left(cos^4x-1\right)=0\)
\(\Leftrightarrow cos^2x\left(cos^2x-1\right)\left(cos^2x+1\right)=0\)
\(\Leftrightarrow-cos^2x.sin^2x=0\)
\(\Leftrightarrow sin^22x=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
b/
\(cos^6x-sin^6x=\frac{13}{18}cos^22x\)
\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(cos^4x+sin^4x+sin^2x.cos^2x\right)=\frac{13}{18}cos^22x\)
\(\Leftrightarrow cos2x\left[\left(sin^2x+cos^2x\right)^2-sin^2x.cos^2x\right]=\frac{13}{18}cos^22x\)
\(\Leftrightarrow cos2x\left(1-\frac{1}{4}sin^22x\right)=\frac{13}{18}cos^22x\)
\(\Leftrightarrow cos2x\left(1-\frac{1}{4}\left(1-cos^22x\right)\right)=\frac{13}{18}cos^22x\)
\(\Leftrightarrow cos2x\left(\frac{3}{4}+\frac{1}{4}cos^22x\right)=\frac{13}{18}cos^22x\)
\(\Leftrightarrow cos2x\left(\frac{1}{4}cos^22x-\frac{13}{18}cos2x+\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\\frac{1}{4}cos^22x-\frac{13}{18}cos2x+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
c/
\(cos^4x+sin^6x=cos2x\)
\(\Leftrightarrow\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)
\(\Leftrightarrow cos^32x-5cos^2x+7cos2x-3=0\)
\(\Leftrightarrow\left(cos2x-1\right)^2\left(cos2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=k2\pi\)
\(\Rightarrow x=k\pi\)
Đơn giản biểu thức : \(M=sin^4x\left(1+2cos^2x\right)+cos^4x\left(1+2sin^2x\right)\)
Bài 1 chứng minh biểu thức sau ko phụ thuộc vào biến x
1/B=cos^2xcot^2x +3cos^2x - cot^2x + 2sin^2x
2/M=2cos^4x -sin^4x +sin^2xcos^2x +3sin^2x
\(B=cos^2x.cot^2x+cos^2x-cot^2x+2\left(sin^2x+cos^2x\right)\)
\(=cos^2x\left(cot^2x+1\right)-cot^2x+2\)
\(=\frac{cos^2x}{sin^2x}-cot^2x+1=cot^2x-cot^2x+1=1\)
\(M=cos^4x-sin^4x+cos^4x+sin^2x.cos^2x+3sin^2x\)
\(=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)
\(=cos^2x-sin^2x+cos^2x+3sin^2x\)
\(=2\left(sin^2x+cos^2x\right)=2\)
Chứng minh các biểu thức sau không phụ thuộc x:
a) A = \(2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
b) \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}\)
c) C = \(2cos^4x-sin^4x+sin^2x.cos^2x+3sin^2x\)
Giả sử các biểu thức đều có nghĩa
\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)
\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)
\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)
\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)
b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)
\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)
c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)
\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)
\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)
\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)