Tìm GTNN của B = 2x + \(4\sqrt{2x-1}\)
Cho A=\(\frac{2x+4}{1-x\sqrt{x}}+\frac{1+\sqrt{x}}{1-x}-\frac{1+2\sqrt{x}}{1+\sqrt{x}-2x}\)
a) Rút gọn A
b) Tìm GTNN của A
Tìm x để các bthuc sau đạt gtnn,tìm gtnn đó
\(\sqrt{x-4}-2\)
\(x-\sqrt{x}\)
\(x-4\sqrt{x}+10\)
\(\sqrt{x^2-2x+4+1}\)
Bài 1:
$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$
$\Leftrightarrow x=4$
Bài 2: $x-\sqrt{x}$
ĐKXĐ: $x\geq 0$
$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$
$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$
$\Leftrightarrow x=\frac{1}{4}$
Bài 3:
$x-4\sqrt{x}+10$
ĐKXĐ: $x\geq 0$
Ta có: $x-4\sqrt{x}+10=(x-4\sqrt{x}+4)+6=(\sqrt{x}-2)^2+6\geq 0+6=6$
Vậy gtnn của biểu thức là $6$. Giá trị này đạt được khi $\sqrt{x}-2=0\Leftrightarrow x=4$
Tìm GTLN, GTNN của hàm số:
\(y=\sqrt{5sin^2x+1}+\sqrt{5cos^2x+1}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{5sin^2x+1}=a\\\sqrt{5cos^2x+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1\le a;b\le\sqrt{6}\\a^2+b^2=5\left(sin^2x+cos^2x\right)+2=7\end{matrix}\right.\)
\(y=a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{14}\)
\(y_{max}=\sqrt{14}\) khi \(cos2x=0\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Do \(1\le a\le\sqrt{6}\Rightarrow\left(a-1\right)\left(a-\sqrt{6}\right)\le0\)
\(\Rightarrow a\ge\dfrac{a^2+\sqrt[]{6}}{\sqrt{6}+1}\)
Tương tự ta có \(b\ge\dfrac{b^2+\sqrt{6}}{\sqrt{6}+1}\)
\(\Rightarrow y=a+b\ge\dfrac{a^2+b^2+2\sqrt{6}}{\sqrt{6}+1}=\dfrac{7+2\sqrt{6}}{\sqrt{6}+1}=\sqrt{6}+1\)
\(y_{min}=\sqrt{6}+1\) khi \(sin2x=0\Rightarrow x=\dfrac{k\pi}{2}\)
Tìm GTLN (nếu có) và GTNN (nếu có) của các biểu thức sau:
a) \(1+\sqrt{2-x},\sqrt{x-3}-2,1-3\sqrt{1-2x}\)
b) \(\sqrt{4-x^2};\sqrt{2x^2-x+3};1-\sqrt{-x^2+2x+5}\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
cho \(x\ge-\dfrac{1}{3}\). tìm GTNN của \(E=5x-6\sqrt{2x+7}-4\sqrt{3x-1}+2\)
Bạn xem lại ĐKĐB. Nếu $x\geq \frac{-1}{3}$ thì mình nghi ngờ $\sqrt{3x-1}$ của bạn viết là $\sqrt{3x+1}$Còn nếu đúng là $\sqrt{3x-1}$ thì ĐK cần là $x\geq \frac{1}{3}$.
Tìm GTNN của hàm số y=\(\sqrt[3]{x^4+2x^2+1}\) - \(\sqrt[3]{x^2+1}+1\)
help me
Đặt \(\sqrt[3]{x^2+1}=t\left(t\ge1\right)\)
\(y=f\left(t\right)=t^2-t+1\)
\(minf\left(t\right)=f\left(1\right)=1\)
\(minf\left(t\right)=1\Leftrightarrow t=1\Leftrightarrow\sqrt[3]{x^2+1}=1\Leftrightarrow x=0\)
Tìm GTNN của biểu thức A=\(\sqrt{2x^2-2x+5}+\sqrt{2x^2-4x+4}\)
\(\sqrt{2}A=\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\)
\(\sqrt{2}A=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\)
Áp dụng BĐT \(\sqrt{A^2+B^2}+\sqrt{C^2+D^2}\ge\sqrt{\left(A+C\right)^2+\left(B+D\right)^2}\)
=>\(\sqrt{2}A\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\)
=>\(A\ge\sqrt{13}\)
Dấu bằng xảy ra<=> \(\frac{2x-1}{3}=\frac{2x-2}{2}\)
<=>.........
Tìm GTNN của biểu thức :
D = \(x+2y-\sqrt{2x-1}-5\sqrt{4y-3}+13\) (x ≥ 1/2, y ≥ 3/4)
Helppp!!! :(
bài 1:
\(P=\frac{x^2-x}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{x-1}+\frac{2x-2}{x-1}\)
a) Rút gọn
b) tìm GTNN của P
c) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\)có giá trị nguyên
bài 2. \(N=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{2\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Tìm x để N xác định
b) Tìm x để N đạt GTNN tìm GTNN đó
lm mí bài nì rối quá, ai giúp mk vs