Đặt \(\left\{{}\begin{matrix}\sqrt{5sin^2x+1}=a\\\sqrt{5cos^2x+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1\le a;b\le\sqrt{6}\\a^2+b^2=5\left(sin^2x+cos^2x\right)+2=7\end{matrix}\right.\)
\(y=a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{14}\)
\(y_{max}=\sqrt{14}\) khi \(cos2x=0\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Do \(1\le a\le\sqrt{6}\Rightarrow\left(a-1\right)\left(a-\sqrt{6}\right)\le0\)
\(\Rightarrow a\ge\dfrac{a^2+\sqrt[]{6}}{\sqrt{6}+1}\)
Tương tự ta có \(b\ge\dfrac{b^2+\sqrt{6}}{\sqrt{6}+1}\)
\(\Rightarrow y=a+b\ge\dfrac{a^2+b^2+2\sqrt{6}}{\sqrt{6}+1}=\dfrac{7+2\sqrt{6}}{\sqrt{6}+1}=\sqrt{6}+1\)
\(y_{min}=\sqrt{6}+1\) khi \(sin2x=0\Rightarrow x=\dfrac{k\pi}{2}\)