Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Thu Uyên
Xem chi tiết
Nguyễn Đức Tài
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Hồng Phúc
17 tháng 9 2021 lúc 22:28

a, \(y=2sin^2x-cos2x=1-2cos2x\)

Vì \(cos2x\in\left[-1;1\right]\Rightarrow y=2sin^2x-cos2x\in\left[-1;3\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=-1\\y_{max}=3\end{matrix}\right.\)

Nguyễn Minh Ngọc
Xem chi tiết
2611
19 tháng 7 2023 lúc 21:51

`TXĐ: R`

Ta có: `-1 <= sin(x+ \pi/3) <= 1`

`<=>0 <= sin^4 (x+\pi/3) <= 1`

`<=>2 <= y <= 3`

    `=>y_[mi n]=2<=>sin(x +\pi/3)=0<=>x= -\pi/3+k\pi`   `(k in ZZ)`

        `y_[max]=3<=>sin(x +\pi/3)=1<=>x=\pi/6 +k2\pi`  `(k in ZZ)`

Nguyễn Sinh Hùng
Xem chi tiết
Hồng Phúc
16 tháng 8 2021 lúc 19:06

Xem lại đề.

Diệu Ngọc
Xem chi tiết
Akai Haruma
6 tháng 8 2021 lúc 18:41

2.

$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$

$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$

Vì: $0\leq \sin ^22x\leq 1$

$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$

Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$

 

Akai Haruma
6 tháng 8 2021 lúc 18:42

3.

$0\leq |\sin x|\leq 1$

$\Rightarrow 3\geq 3-2|\sin x|\geq 1$

Vậy $y_{\min}=1; y_{\max}=3$

Akai Haruma
6 tháng 8 2021 lúc 18:46

1.

\(y=\cos x+\cos (x-\frac{\pi}{3})=\cos x+\frac{1}{2}\cos x+\frac{\sqrt{3}}{2}\sin x\)

\(=\frac{3}{2}\cos x+\frac{\sqrt{3}}{2}\sin x\)

\(y^2=(\frac{3}{2}\cos x+\frac{\sqrt{3}}{2}\sin x)^2\leq (\cos ^2x+\sin ^2x)(\frac{9}{4}+\frac{3}{4})\)

\(\Leftrightarrow y^2\leq 3\Rightarrow -\sqrt{3}\leq y\leq \sqrt{3}\)

Vậy $y_{\min}=-\sqrt{3}; y_{max}=\sqrt{3}$

Nguyễn Sinh Hùng
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 16:31

\(y=4cos^2\left(\dfrac{x}{2}-\dfrac{\pi}{12}\right)-7=2\left[cos\left(x-\dfrac{\pi}{6}\right)+1\right]-7=2cos\left(x-\dfrac{\pi}{6}\right)-5\)

Đặt \(x-\dfrac{\pi}{6}=t\Rightarrow t\in\left[-\dfrac{\pi}{6};\dfrac{5\pi}{6}\right]\)

\(\Rightarrow y=2cost-5\)

Do \(t\in\left[-\dfrac{\pi}{6};\dfrac{5\pi}{6}\right]\Rightarrow cost\in\left[-\dfrac{\sqrt{3}}{2};1\right]\)

\(\Rightarrow y\in\left[-5-\sqrt{3};-3\right]\)

\(y_{max}=-3\) khi \(t=0\) hay \(x=\dfrac{\pi}{6}\)

\(y_{min}=-5-\sqrt{3}\) khi \(y=\dfrac{5\pi}{6}\) hay \(x=\pi\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:00

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \cot \left( { - x} \right) =  - \cot x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \cot x\) là hàm số lẻ.

b)

   \(x\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

  \(\cot x\)

  \(\sqrt 3 \)

    \(1\)

\(\frac{{\sqrt 3 }}{3}\)

     \(0\)

      \( - \frac{{\sqrt 3 }}{3}\)

    \( - 1\)

\( - \sqrt 3 \)

 c) Từ đồ thị trên, ta thấy hàm số \(y = \cot x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi  + k\pi } \right)\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:59

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \tan \left( { - x} \right) =  - \tan x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \tan x\) là hàm số lẻ.

b)

    \(x\)

     \( - \frac{\pi }{3}\)

      \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

     \(0\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

  \(\tan x\)

\( - \sqrt 3 \)

   \( - 1\)

      \( - \frac{{\sqrt 3 }}{3}\)

     \(0\)

\(\frac{{\sqrt 3 }}{3}\)

      \(1\)

\(\sqrt 3 \)

 

c) Từ đồ thị trên, ta thấy hàm số \(y = \tan x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).