Giải phương trình 6x/(x-2)+6x/(x-2)(x-5)=2x/(x-5)
Giải các phương trình sau:
a)(x-2)x=2x(x+5)
b)(2x-5)(x+11)=(5-2x)(2x+1)
c)x^2+6x+9=4x^2
d)(x+2)(5-4x)=x^2+4x+4
a: \(\Leftrightarrow x\left(2x+10\right)-x\left(x-2\right)=0\)
=>x(2x+10-x+2)=0
=>x(x+12)=0
=>x=0 hoặc x=-12
b: \(\Leftrightarrow\left(2x-5\right)\left(x+11\right)+\left(2x-5\right)\left(2x+1\right)=0\)
=>(2x-5)(3x+12)=0
=>x=5/2 hoặc x=-4
c: \(\Leftrightarrow\left(2x\right)^2-\left(x+3\right)^2=0\)
=>(x-3)(3x+3)=0
=>x=3 hoặc x=-1
d: \(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5-4x-x-2\right)=0\)
=>(x+2)(-5x+3)=0
=>x=-2 hoặc x=3/5
\(a,\left(x-2\right)x=2x\left(x+5\right)\)
\(\Leftrightarrow\left(x-2\right)x-2x\left(x+5\right)=0\)
\(\Leftrightarrow x.\left(x-2-2x-10\right)=0\)
\(\Leftrightarrow x\left(-x-12\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+12=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-12\end{matrix}\right.\)
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để đề bài được rõ ràng hơn.
giải các phương trình sau:
a) x(x-1)-(x^2-3x+5)
b) (x-5)^2+6x-30=0
c) x/x-2-1/x=2/x^2-2x
b: =>(x-5)2+6(x-5)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
c: \(\Leftrightarrow x^2-x+2=2\)
=>x(x-1)=0
=>x=0(loại) hoặc x=1(nhận)
Giải phương trình: (x^2+6x+5)^3+(x^2-7x+6)^3=(2x^2-x+11)^3
giải phương trình
\(\sqrt{x^2-6x+9}=2x-5\)
ĐK: \(\forall x\in R\)
PT\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x^2-6x+9=4x^2-20x+25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\3x^2-14x+16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=\dfrac{8}{3}\left(tm\right)\end{matrix}\right.\)
Điều kiện :
\(\left\{{}\begin{matrix}x^2-6x+9\ge0\\2x-5\ge0\end{matrix}\right.\)⇔ \(x\ge\dfrac{5}{2}\)
Ta có :
\(\left(\sqrt{x^2-6x+9}\right)^2=\left(2x-5\right)^2\)
⇔ \(x^2-6x+9=4x^2-20x+25\)
⇔ \(3x^2-14x+16=0\)
⇔\(\left\{{}\begin{matrix}x=2\left(loại\right)\\x=\dfrac{8}{3}\left(tm\right)\end{matrix}\right.\)
Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge\dfrac{5}{2}\)
\(\sqrt{x^2-6x+9}=2x-5\Rightarrow\sqrt{\left(x-3\right)^2}=2x-5\)
\(\Rightarrow\left|x-3\right|=2x-5\)
Xét \(x\ge3\Rightarrow x-3=2x-5\Rightarrow x-2=0\Rightarrow x=2\) (loại)
Xét \(x< 3\Rightarrow\dfrac{5}{2}\le x< 3\Rightarrow3-x=2x-5\Rightarrow3x-8=0\Rightarrow x=\dfrac{8}{3}\)
Vậy \(x=\dfrac{8}{3}\) là nghiệm của pt...
Giải các phương trình dưới đây
1, \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
2,\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
3, \(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\) (x=3 ; y=3)
Giải bất phương trình
a) -x^2+6x-5 < (x-5)(x+6)
b) (2x-1)/5 + 1 - 2x/3 >= 3(x+1)/2 - 7/10
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
Giải các phương trình sau:
a \(x^4=5x^2+2x-3\)
b \(x^4=6x^2+12x+10\)
c \(3x^3+3x^2+3x=-1\)
d \(8x^3-12x^2+6x-5=0\)