Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tường Nguyễn Thế
Xem chi tiết
Lellllllll
Xem chi tiết
Phan Hà Thanh
Xem chi tiết
Dương Hoàng Bảo Linh ( l...
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Thắng Nguyễn
10 tháng 8 2017 lúc 22:47

post từng câu một thôi bn nhìn mệt quá

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 20:02

a: \(y=\left(x-1\right)^3\)

=>\(y'=\left[\left(x-1\right)^3\right]'=3\left(x-1\right)^2\cdot\left(x-1\right)'\)

\(=3\left(x-1\right)^2\)

b: \(y=\left(x+2\right)\left(2x^2-3\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)

=>\(y'=2x^2-3+2\left(x+2\right)\)

\(=2x^2+2x+1\)

c: \(y=\left(x-1\right)^2\left(x+2\right)\)

=>\(y=\left(x^2-2x+1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-2x+1\right)'\left(x+2\right)-\left(x^2-2x+1\right)\left(x+2\right)'\)

=>\(y'=\left(2x-2\right)\left(x+2\right)-x^2+2x-1\)

\(=2x^2+4x-2x-4-x^2+2x-1\)

=>\(y'=x^2+4x-5\)

c: \(y=\left(x^2-1\right)\left(2x+1\right)\)

=>\(y'=\left(x^2-1\right)'\left(2x+1\right)+\left(x^2-1\right)\left(2x+1\right)'\)

\(=2x\left(2x+1\right)+2\left(x^2-1\right)\)

\(=4x^2+2x+2x^2-2=6x^2+2x-2\)

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2022 lúc 22:55

Ta có:

\(\sqrt{2x\left(x+y\right)^3}+y\sqrt{2\left(x^2+y^2\right)}\)

\(=\sqrt{\left(2x^2+2xy\right)\left(x^2+2xy+y^2\right)}+\sqrt{2}y.\sqrt{x^2+y^2}\)

\(\le\sqrt{\left(2x^2+2xy+2y^2\right)\left(x^2+2xy+y^2+x^2+y^2\right)}=2\left(x^2+xy+y^2\right)\)

\(\Rightarrow3\left(x^2+y^2\right)\le2\left(x^2+xy+y^2\right)\)

\(\Rightarrow\left(x-y\right)^2\le0\)

\(\Rightarrow x=y\)

Thế vào pt đầu:

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

Đặt \(\sqrt{x^2+1}=t\Rightarrow t^2-\left(x+3\right)t+3x=0\)

\(\Delta=\left(x+3\right)^2-12x=\left(x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+3-\left(x-3\right)}{2}=3\\t=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\)

\(\Rightarrow...\)

2. 4 biến xét dài quá, để người khác

Nguyễn Việt Lâm
13 tháng 1 2022 lúc 22:26

2.

\(a^2+b^2+c^2+d^2=2d^2\) chẵn

\(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) luôn chẵn

\(\Rightarrow a+b+c+d\) chẵn

\(\Rightarrow\) trong 4 số, luôn có 2 chẵn 2 lẻ, hoặc 4 số đều chẵn 

Cả 2 trường hợp đều suy ra abcd chia hết cho 4 (tích của ít nhất 2 số chẵn)

Nguyễn Việt Lâm
14 tháng 1 2022 lúc 5:47

Ủa mà nhìn lại bài 2 làm sai (nhìn sai đề thành chứng minh abcd chia hết cho 4, trong khi thực tế ko có d)

Vậy làm như sau:

Do bình phương của 1 số nguyên chia 4 chỉ có thể dư 0 hoặc 1, \(\Rightarrow a^2+b^2+c^2\) chia 4 dư 0, 1, 2, 3 (tùy thuộc trong số a;b;c có bao nhiêu số là chẵn)

Trong khi đó \(d^2\) chia 4 dư 1 nên ta chỉ có 2 TH sau:

TH1: \(a^2+b^2+c^2\) và \(d^2\) đều chia hết cho 4

\(\Rightarrow a;b;c\) đều chẵn \(\Rightarrow abc⋮4\)

TH2: \(a^2+b^2+c^2\) và \(d^2\) đều chia 4 dư 1

\(\Rightarrow\) Trong a;b;c có đúng 1 số lẻ và 2 số chẵn

\(\Rightarrow abc⋮4\)

Bí Mật
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 13:46

a: \(y=\left(x^2-1\right)^2\)

=>\(y'=2\left(x^2-1\right)'\left(x^2-1\right)\)

\(=4x\left(x^2-1\right)\)

Đặt y'>0

=>\(x\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>\(x>1\)

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< 0\)

Đặt y'<0

=>\(x\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-1< x< 1\end{matrix}\right.\)

=>0<x<1

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>x<-1

Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-1;0\right)\)

Hàm số nghịch biến trên các khoảng (0;1) và \(\left(-\infty;-1\right)\)

b: \(y=\left(3x+4\right)^3\)

=>\(y'=3\left(3x+4\right)'\left(3x+4\right)^2\)

\(\Leftrightarrow y'=9\left(3x+4\right)^2>=0\forall x\)

=>Hàm số luôn đồng biến trên R

c: \(y=\left(x+3\right)^2\left(x-1\right)\)

=>\(y=\left(x^2+6x+9\right)\left(x-1\right)\)

=>\(y'=\left(x^2+6x+9\right)'\left(x-1\right)+\left(x^2+6x+9\right)\left(x-1\right)'\)

=>\(y'=\left(2x+6\right)\left(x-1\right)+x^2+6x+9\)

=>\(y'=2x^2-2x+6x-6+x^2+6x+9\)

=>\(y'=3x^2-2x+3\)

\(\Leftrightarrow y'=3\left(x^2-\dfrac{2}{3}x+1\right)\)

=>\(y'=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{8}{9}\right)\)

=>\(y'=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{8}{3}>=\dfrac{8}{3}>0\forall x\)

=>Hàm số luôn đồng biến trên R

d: \(y=\left(2x+2\right)\left(x^3-1\right)\)

=>\(y'=\left(2x+2\right)'\left(x^3-1\right)+\left(2x+2\right)\left(x^3-1\right)'\)

\(=2\left(x^3-1\right)+3x^2\left(2x+2\right)\)

\(=2x^3-2+6x^3+6x^2\)

\(=8x^3+6x^2-2\)

Đặt y'>0

=>\(8x^3+6x^2-2>0\)

=>\(x>0,46\)

Đặt y'<0

=>\(8x^3+6x^2-2< 0\)

=>\(x< 0,46\)

Vậy: Hàm số đồng biến trên khoảng tầm \(\left(0,46;+\infty\right)\)

Hàm số nghịch biến trên khoảng tầm \(\left(-\infty;0,46\right)\)

Đang Thuy Duyen
Xem chi tiết
Khôi Bùi
18 tháng 9 2018 lúc 13:27

a ) \(\left(x+y\right)^3+\left(x-y\right)^3-2x^3\)

\(=x^3+3x^2y+3y^2x+y^3+x^3-3x^2y+3y^2x-y^3-2x^3\)

\(=\left(x^3+x^3-2x^3\right)+\left(y^3-y^3\right)+\left(3x^2y-3x^2y\right)+\left(3y^2x+3y^2x\right)\)

\(=6y^2x\)

b ) \(\left(x+y\right)^2-\left(x-y\right)^2+\left(x+y\right)\left(x-y\right)\)

\(=\left(x+y-x+y\right)\left(x+y+x-y\right)+x^2-y^2\)

\(=2y.2x+x^2-y^2\)

\(=x^2-y^2+4xy\)

c ) \(\left(3x+1\right)^2+2\left(9x^2-1\right)+\left(3x-1\right)^2\)

\(=\left(3x+1\right)^2+2\left(3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(3x+1+3x-1\right)^2\)

\(=\left(6x\right)^2=36x^2\)

d ) \(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)

\(=\left(a+b+c-b-c\right)^2\)

\(=a^2\)