giải hệ phương trình\(\left\{{}\begin{matrix}x+y=4\\x^2+2y^2=11\end{matrix}\right.\)
Số nghiệm thực của hệ phương trình \(\left\{{}\begin{matrix}3x^2-4xy+y^2=0\\x^2+2y=8\end{matrix}\right.\) là:
Lời giải:
$3x^2-4xy+y^2=0$
$\Leftrightarrow 3x(x-y)-y(x-y)=0$
$\Leftrightarrow (x-y)(3x-y)=0$
$\Rightarrow x-y=0$ hoặc $3x-y=0$
Nếu $x-y=0\Leftrightarrow x=y$. Thay vào pt $(2)$:
$x^2+2x=8$
$\Leftrightarrow x^2+2x-8=0$
$\Leftrightarrow (x-2)(x+4)=0$
$\Rightarrow x=2$ hoặc $x=-4$.
Vậy hpt có nghiệm $(x,y)=(2,2); (-4,-4)$
Nếu $3x-y=0$
$\Leftrightarrow 3x=y$. Thay vô pt $(2)$:
$x^2+6x=8$
$\Leftrightarrow x^2+6x-8=0$
$\Rightarrow x=-3\pm \sqrt{17}$
$\Rightarrow y=3(-3\pm \sqrt{17})$ (tương ứng)
Vậy tổng cộng hpt có 4 nghiệm $(x,y)$ thực.
giải hệ phương trình
\(\left\{{}\begin{matrix}\left(xy-2\right)^2+6y=3\left(\dfrac{1}{x}-\dfrac{3}{x^2}\right)\\y^3-4y^2+\dfrac{6}{x}+\left(y-1\right)\sqrt{\left(3y-2\right)}=\dfrac{9}{x^2}\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^3-2x^2y+x=y^3-2xy^2+y\left(1\right)\\\sqrt{y-1}+\sqrt{5-y}=-x^2+2y+1\left(2\right)\end{matrix}\right.\)
Giải hệ phương trình sau bằng cách cộng hệ số
1) \(\left\{{}\begin{matrix}x-y=5\\2x+y=11\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}3x+2y=1\\3x+y=2\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-y=2\\3x+2y=11\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Giải phuơng trình:
\(\left\{{}\begin{matrix}\left(x-y\right)^2+2y=3\\4x^2+4xy-3x-2y-6=0\end{matrix}\right.\)
giải hệ phương trình:\(\left\{{}\begin{matrix}\sqrt{x+y}-\sqrt{x-y}=2\\\sqrt{x^2+y^2}+\sqrt{x^2-y^2}=4\end{matrix}\right.\)
Lời giải:
Đặt \((\sqrt{x-y},\sqrt{x+y})=(b,a)\)
HPT trở thành: \(\left\{\begin{matrix} a-b=2(1)\\ \sqrt{\frac{a^4+b^4}{2}}+ab=4(2)\end{matrix}\right.\)
\((2)\Leftrightarrow \sqrt{\frac{a^4+b^4}{2}}=4-ab\). Bình phương hai vế:
\(\Rightarrow \frac{a^4+b^4}{2}=16+a^2b^2-8ab\)
\(\Leftrightarrow a^4+b^4-2a^2b^2=32-16ab\)
\(\Leftrightarrow (a^2-b^2)^2=32-16ab\Leftrightarrow 4(a+b)^2=32-16ab\) (do \(a-b=2\) )
\(\Leftrightarrow (a+b)^2=8-4ab\)
Thay \(a=b+2\Rightarrow (2b+2)^2=8-4b(b+2)\)
\(\Leftrightarrow (b+1)^2=2-b(b+2)\Leftrightarrow 2b^2+4b-1=0\)
\(\Rightarrow b=\frac{-2+\sqrt{6}}{2}\) (do \(b\geq 0\))
Từ đó kéo theo \(a=\frac{2+\sqrt{6}}{2}\). Từ đây suy ra \((x,y)=(\frac{5}{2},\sqrt{6})\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}\frac{3y}{x-1}+\frac{2x}{y+1}=3\\\frac{2y}{x-1}-\frac{5x}{y+1}=2\end{matrix}\right.\)
giải gíup em với ạ
Giải phương trình:
1. \(\left\{{}\begin{matrix}5x-2y=-9\\4x+3y=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+y-4=0\\x+2y-5=0\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}2x+3y-7=0\\x+2y-4=0\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}5x+6y=17\\9x-y=7\end{matrix}\right.\)
1)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-1;2\right)\)
2)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
3)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
4)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
\(\left\{{}\begin{matrix}2X-Y=3\\X+3Y=4\end{matrix}\right.\)
Giải hệ pt
`{(2x-y=3),(x+3y=4):}`
`<=>{(6x-3y=9),(x+3y=4):}`
`<=>{(7x=13),(x+3y=4):}`
`<=>{(x=13/7),(13/7+3y=4):}`
`<=>{(x=13/7),(y=5/7):}`
2x - y = 3
x + 3y = 4
6x - 3y = 9
x + 3y = 4
7x = 13
x + 3y = 4
x = 13/7
y = 5/7