Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Lâm
28 tháng 8 2020 lúc 21:54

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(4tan^3x+3-3tanx\left(1+tan^2x\right)-tan^2x=0\)

\(\Leftrightarrow tan^3x-tan^2x-3tanx+3=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(tan^2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\\tanx=-\sqrt{3}\end{matrix}\right.\) \(\Leftrightarrow...\)

Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 2 2021 lúc 23:42

\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)

\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)

\(A=sin^2x+cos^2x=1\)

\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)

\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)

\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)

\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)

\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)

Ngân Lại
Xem chi tiết
Lê Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 10 2020 lúc 17:09

a. ĐKXĐ: ...

\(\frac{sinx}{cosx}+\frac{sin2x}{cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow\frac{sin2x.cosx+cos2x.sinx}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow sin3x\left(\frac{cosx.cos2x+cos3x}{cosx.cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{cosx\left(2cos^2x-1\right)+4cos^3x-3cosx}{cosx.cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{6cos^2x-4}{cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{3cos2x-1}{cos2x.cos3x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cos2x=\frac{1}{3}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 10 2020 lúc 17:16

b.

\(cos2x\left(2cos^22x-1\right)=\frac{1}{2}\)

\(\Leftrightarrow4cos^32x-2cos2x-1=0\)

Pt bậc 3 này ko giải được, chắc bạn ghi nhầm đề

c. ĐKXĐ: ...

\(\frac{cosx}{sinx}-\frac{sinx}{cosx}=cosx-sinx\)

\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx.cosx}=cosx-sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Rightarrow x=...\\\frac{cosx+sinx}{sinx.cosx}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx+sinx=sinx.cosx\)

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Rightarrow t=\frac{t^2-1}{2}\Rightarrow t^2-2t-1=0\Rightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\left(l\right)\\t=1-\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\Rightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1-\sqrt{2}}{\sqrt{2}}\Rightarrow x=...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 10 2020 lúc 17:19

d.

\(\Leftrightarrow2\left(cosx-cos3x\right)sin4x=sin3x\)

\(\Leftrightarrow2sin4x.cosx-2sin4x.cos3x=sin3x\)

\(\Leftrightarrow sin5x+sin3x-sin7x-sinx=sin3x\)

\(\Leftrightarrow sin5x-sin7x-sinx=0\)

\(\Leftrightarrow-2cos6x.sinx-sinx=0\)

\(\Leftrightarrow sinx\left(2cos6x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos6x=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Minh Trần
Xem chi tiết
Lê Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2020 lúc 15:34

1.

\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)

2.

\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)

4.

\(cos3x+cosx+cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos2x=0\)

\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
4 tháng 10 2020 lúc 15:35

3. ĐKXĐ: ...

\(\Leftrightarrow\frac{sin\left(x-15\right)}{cos\left(x-15\right)}=\frac{3sin\left(x+15\right)}{cos\left(x+15\right)}\)

\(\Leftrightarrow sin\left(x-15\right)cos\left(x+15\right)=3sin\left(x+15\right)cos\left(x-15\right)\)

\(\Leftrightarrow sin2x-sin30^0=3\left[sin2x+sin30^0\right]\)

\(\Leftrightarrow sin2x-\frac{1}{2}=3sin2x+\frac{3}{2}\)

\(\Leftrightarrow sin2x=-1\)

\(\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

Nguyễn Việt Lâm
4 tháng 10 2020 lúc 15:38

5.

\(sin6x+sin2x+sin4x=0\)

\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)

\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)

6. ĐKXĐ; ...

\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)

\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)

\(\Leftrightarrow tan3x=1\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

Khách vãng lai đã xóa
Đạt Nguyễn Tiến
Xem chi tiết
Khánh Linh Nguyễn
Xem chi tiết
Akai Haruma
6 tháng 7 2019 lúc 22:43

a)

\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)

\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)

c)

\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)

\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)

d)

\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)

\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)

Akai Haruma
6 tháng 7 2019 lúc 22:53

f)

\(\cos 2x-\cos 4x=0\)

\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)

b,e,g bạn xem lại đề, đơn vị không thống nhất.

Lê Bùi
12 tháng 10 2018 lúc 18:16

ghi đề rõ xíu đi

Nguyễn Lê Phước Thịnh
13 tháng 10 2022 lúc 14:16

\(\Leftrightarrow cos^4x+sin^4x+\dfrac{1}{2}\left[sin\left(3x-\dfrac{pi}{4}+x-\dfrac{pi}{4}\right)+sin\left(3x-\dfrac{pi}{4}-x+\dfrac{pi}{4}\right)\right]-\dfrac{3}{2}=0\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}\left[sin\left(4x-\dfrac{pi}{2}\right)+sin2x\right]-\dfrac{3}{2}=0\)

=>\(-\dfrac{1}{2}sin^22x-\dfrac{1}{2}+\dfrac{1}{2}\left[-sin\left(\dfrac{pi}{2}-4x\right)+sin2x\right]=0\)

=>\(-sin^22x-1-cos4x+sin2x=0\)

=>\(-sin^22x-1-\left(1-2sin^22x\right)+sin2x=0\)

=>\(-sin^22x-1-1+2sin^22x+sin2x=0\)

=>\(sin^22x+sin2x-2=0\)

=>sin2x-1=0

=>sin2x=1

=>2x=pi/2+k2pi

=>x=pi/4+kpi