cho tam giác abc vuông tai A đường cao ah goi e và f là hình chiếu của h trên ab,ac biết ab=3 cm góc C=3O đô
tính ac,ha
chứng minh be.ba+cf.ca+2hb.hc=bc^2
biết bc=6 cm tìm giá tri lớn nhất của diên tích tứ giác heaf
cho tam giác ABC vuông tại A co đường cao AH. Gọi E,F lần lượt là hình chiếu vuông góc của H trên AB,AC.
a) Cho AB=3cm, góc ACB=30 độ. Tính độ dài AC,HA
b) Chứng minh BE.BA+CF.CA+2HB.HC=BC^2
c) Biết BC=6cm. Tìm GTLN của diện tích tứ giác HEAF
Cao nhân nào đi qua giúp tôi câu c :((((((
Cho tam giác ABC vuông tại A có đường cao AH.Vẽ HE vuông AB,HF vuông AC
1) Cho biết AB=3 cm, AC=4 cm. Tính HB,HC,AH
2) Chứng minh AE.EB+AF.FC=AH^2
3) Chứng minh BE=BC.cos^3 B
4) Chứng minh BE.BA+CF.CA+2HB.HC=BC^2
mọi người kẻ hình và giải thích rõ giúp mình với ạ
1:
BC=căn AB^2+AC^2=5cm
Xét ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2; CH*CB=CA^2
=>HB=3^2/5=1,8cm; CH=4^2/5=3,2cm
AH=căn 1,8*3,2=2,4(cm)
2: ΔAHB vuông tại H có HE là đường cao
nên AE*EB=HE^2
ΔAHC vuông tại H có HF là đường cao
nên AF*FC=HF^2
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
AE*EB+AF*FC
=HE^2+HF^2
=EF^2
=AH^2
4:
BE*BA+CF*CA+2*HB*HC
=BH^2+CH^2+2*HB*HC
=(BH+CH)^2=BC^2
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AC=12 cm, BC=15cm.
a) Tính HA, HB, HC.
b) Gọi E, F lần lượt là hình chiếu của góc H lên AB, AC. Chứng minh: AE.AB=AF.AC
c) Chứng minh: HE2+HF2=HB.HC.
a) tam giác ABC vuông tại A nên áp dụng Py-ta-go
\(\Rightarrow AB^2=BC^2-AC^2=15^2-12^2=81\Rightarrow AB=9\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.9}{15}=\dfrac{36}{5}\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=\dfrac{27}{5}\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=\dfrac{48}{5}\left(cm\right)\)
b) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AE.AB=AH^2\)
tam giác AHC vuông tại HA có đường cao HF nên áp dụng hệ thức lượng
\(\Rightarrow AF.AC=AH^2=AE.AB\)
c) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật
\(\Rightarrow AH=EF\)
tam giác EHF vuông tại H nên áp dụng Py-ta-go
\(\Rightarrow HE^2+HF^2=EF^2=AH^2\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH^2=HB.HC\Rightarrow HE^2+HF^2=HB.HC\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có EH là đường cao ứng với cạnh huyền BA, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
cho tam giác ABC vuông tại A, đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên cạnh AB,AC.
a. Trong trường hợp AB=6, AC=8, hãy tính BC, AH, Sin b
b. Chứng minh BE.BA + AF.AC = AB2
Lời giải:
a. Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm)
$AH=2S_{ABC}:BC=AB.AC:BC=6.8:10=4,8$ (cm)
$\sin B = \frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}$
b.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
$BE.BA=BH^2$
$AF.AC=AH^2$
$\Rightarrow BE.BA+AF.AC=BH^2+AH^2=AB^2$ (đpcm)
Cho tam giác ABC vuông tại A có đường cao AH. Gọi E,F lần lượt là hình chiếu vuông góc của H trên AB,AC.
a) Cho AB=3cm, góc ACB=30 độ. Tính độ dài AC,HA
b) Chứng minh BE.BA+CF.CA+2HB.HC=BC^2
c) Biết BC=6cm. Tìm GTLN của diện tích tứ giác HEAF
cho tam giác ABC vuông tại A co đường cao AH. Gọi E,F lần lượt là hình chiếu vuông góc của H trên AB,AC.
a) Cho AB=3cm, góc ACB=30 độ. Tính độ dài AC,HA
b) Chứng minh BE.BA+CF.CA+2HB.HC=BC^2
c) Biết BC=6cm. Tìm GTLN của diện tích tứ giác HEAF
bạn tự giải nhé
cho tam giác abc vuông tại a có đường cao ah biết ab = 6 cm ac = 8 cm a) tính độ dài đoạn thẳng bc b) gọi e,f là hình chiếu của h ab,ac. chứng minh tứ giác aehf là hình chữ nhật c) chứng minh tam giác abc đồng dạng tam giác hac
Nếu hỏi hình học mà bạn vẽ hình ra trước thì sẽ nhiều người giúp hơn đấy :3
a, Áp dụng định lý Pytago
=> BC\(^2\)=6\(^2\)+8\(^2\)=100
=> BC=10 (cm)