Nếu hỏi hình học mà bạn vẽ hình ra trước thì sẽ nhiều người giúp hơn đấy :3
a, Áp dụng định lý Pytago
=> BC\(^2\)=6\(^2\)+8\(^2\)=100
=> BC=10 (cm)
Nếu hỏi hình học mà bạn vẽ hình ra trước thì sẽ nhiều người giúp hơn đấy :3
a, Áp dụng định lý Pytago
=> BC\(^2\)=6\(^2\)+8\(^2\)=100
=> BC=10 (cm)
Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 6 cm, AC = 8 cm.
a/ Chứng minh tam giác ABC đồng dạng tam giác BCA. Tính độ dài BC, BH.
b/ Gọi M là trung điểm của AB, N là hình chiếu của H trên AC. Chứng minh HN bình phương = AN.CN
c/ Gọi I là giao điểm của MH và AC. Chứng minh CI.AB = 2 CN.MI
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH=4cm, CH=9cm. Gọi I và K lần lượt là hình chiếu của H lên AB và AC a. Chứng minh tứ giác AIHK là hình chữ nhật b. Cm tam giác AKI đồng dạng với tam giác ABC c. Tính diện tích của tam giác ABC
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Gọi AH là đường cao; E và F lần lượt là hình chiếu vuông góc của H trên AB và AC.
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Chứng minh rằng AH.BC = AB.AC. Tính độ dài EF.
c) Gọi M là trung điểm của BC, đường phân giác của góc BAC cắt BC tại D. Tính diện tích các tam giác ABH, AHD, ADM và AMC.
Cho tam giác ABC vuông tại A, có BC = a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên các cạnh AB và AC
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH Chứng minh góc MEF bằng 90 độ
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất
cho tam giác ABC vuông tại A , đường cao AH(H thuộc BC) . biết BH bằng 4 cm; CH bằng 9 cm. gọi I, K lần lượt là hình chiếu của H lên AB và AC . chứng minh rằng:
a) tứ giác AIHK là hình chữ nhật
b) tam giác AKI đồng dạng với tam giác ABC
c) tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A. Gọi M,N,P lần lượt là trung điểm của AB,AC,BC a) Chứng minh tứ giác AMDN là hình chữ nhật b) Kẻ đường cao AH của tam giác ABC, biết AB= 9cm, AC = 12 cm .Tính độ dài AH
cho tam giác ABC vuông tại A, đường cao AH. Gọi E,F thứ tự là hình chiếu của H trên AB, AC
a, Cm tứ giác AEHF là hình chữ nhật
b, Cm BE.HC=AH.EH
c, ký hiệu diện tích tam giác ABC là S(ABC), diện tích hình chữ nhật AEHF là S(AEHF) Chứng minh S(AEHF) \(\le\)S(ABC). Dấu bằng xảy ra khi và chỉ khi tam giác ABC là tam giác vuông cân .