Giải phương trình:\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
giúp mình với
\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
Giải phương trình
giải phương trình: \(\sqrt{2x^2+16x+18}+\sqrt{x^2+1}=2x+4\)
ê quân,Bạn làm bài này ở phương pháp gì đây,đặt ẩn phụ hay sử dụng BĐT
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)
giải phương trình:
\(\sqrt{2x^2+16x+8}+\sqrt{x^2-1}=2x+4\)
Giải pt:
\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\-4+\sqrt{7}\le x\le-1\end{matrix}\right.\)
Khi x thỏa ĐKXĐ, vế phải luôn dương, bình phương 2 vế ta được:
\(\Leftrightarrow3x^2+16x+17+2\sqrt{\left(x^2-1\right)\left(2x^2+16x+18\right)}=4x^2+16x+16\)
\(\Leftrightarrow2\sqrt{\left(x^2-1\right)\left(2x^2+16x+18\right)}=x^2-1\)
\(\Leftrightarrow4\left(x^2-1\right)\left(2x^2+16x+18\right)=\left(x^2-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\4\left(2x^2+16x+18\right)=x^2-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\7x^2+64x+73=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x=\dfrac{-32+3\sqrt{57}}{7}\\x=\dfrac{-32-3\sqrt{57}}{7}\left(loại\right)\end{matrix}\right.\)
giải pt
\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
pro giải giúp vs
\(ĐKXĐ:2x^2+16x+18\ge0;x^2-1\ge0\)
\(pt\Leftrightarrow\sqrt{x^2-1}=2x+4-\sqrt{2x^2+16x+18}\)(1)
\(\Leftrightarrow\sqrt{x^2-1}\left(\frac{2\sqrt{x^2-1}}{2x+4+\sqrt{2x^2+16x+18}}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\2\sqrt{x^2-1}=2x+4+\sqrt{2x^2+16x+18}\left(2\right)\end{cases}}\)
Lấy(1) + (2), ta được: \(3\sqrt{x^2-1}=4x+8\Leftrightarrow x=\frac{3\sqrt{57}-32}{7}\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{2-x}=\dfrac{3x^2-2x+3}{x^2+1}\)
b) \(x^3-11x^2+36x-18=4\sqrt[4]{27x-54}\)
c) \(16x^4+5=6\sqrt[3]{4x^3+x}\)
d) \(\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}=\dfrac{2}{x}\)
b, \(đk:x\ge2\)
Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0
\(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)
\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)
\(\Leftrightarrow x^3-11x^2+35x-25\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\) (*)
Có \(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)
Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5
c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)
\(\Leftrightarrow4x^3+x>0\)
Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))
\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....
d) Đk: \(x\ge\dfrac{3}{4}\)
Áp dụng bđt cosi:
\(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)
\(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)
\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)
\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)
Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)
Dấu = xảy ra khi x=1 (tm)
`a)\sqrtx+\sqrt{2-x}=(3x^2-2x+3)/(x^2+1)`
`đk:0<=x<=2`
`pt<=>sqrtx-1+\sqrt{2-x}-1=(3x^2-2x+3)/(x^2+1)-2`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x^2-2x+1)/(x^2+1)`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x-1)^2/(x^2+1)`
`<=>(x-1)((x-1)/(x^2+1)+1/(sqrt{2-x}+1)-1/(sqrtx+1))=0`
`<=>x-1=0<=>x=1`
Vậy `S={1}`
giải phương trình
\(\sqrt{2x-2}\)-\(\sqrt{6x-9}\)=\(16x^2\)-48x+35
\(\sqrt{x-2}\) +\(\sqrt{4-x}\)=\(2x^2\)-5x-1
các bạn giúp mình nhé, mình cảm ơn
1) ĐK: \(x\ge\frac{3}{2}\)
pt \(\Leftrightarrow\frac{2x-2-\left(6x-9\right)}{\sqrt{2x-2}+\sqrt{6x-9}}=16x^2-28x-20x+35\)
\(\Leftrightarrow\frac{-4x+7}{\sqrt{2x-2}+\sqrt{6x-9}}=4x\left(4x-7\right)-5\left(4x-7\right)\)
\(\Leftrightarrow-\frac{4x-7}{\sqrt{2x-2}+\sqrt{6x-9}}=\left(4x-7\right)\left(4x-5\right)\)
\(\Leftrightarrow\left(4x-7\right)\left(\frac{1}{\sqrt{2x-2}+\sqrt{6x-9}}+4x-5\right)=0\)
\(\Leftrightarrow4x-7=0\Leftrightarrow x=\frac{7}{4}\) (nhận)
2) ĐK: \(2\le x\le4\)
pt \(\Leftrightarrow\sqrt{x-2}+\sqrt{a-x}=2\left(x^2-6x+9\right)+7x-19\)
\(\Leftrightarrow\sqrt{x-2}-\left(7x-20\right)+\sqrt{4-x}-1=2\left(x-3\right)^2\)
\(\Leftrightarrow\frac{x-2-\left(7x-20\right)^2}{\sqrt{x-2}+7x-20}+\frac{4-x-1}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(134-49x\right)}{\sqrt{x-2}+\left(7x-20\right)}+\frac{3-x}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\) (nhận)
Giải phương trình: \(\sqrt{2x^2+16+18}+\sqrt{x^2+1}=2x+4\)
\(\sqrt{2x^2+16x+18}+\sqrt{x^2+1}=2x+4\left(1\right)\)
\(ĐK:x\in R\)
\(pt\left(1\right)\Leftrightarrow2x^2+16x+18+x^2+1+2\sqrt[]{(2x^2+16x+18)\left(x^2+1\right)}=4x^2+16x+16\)
\(\Leftrightarrow3+2\sqrt{(2x^2+16x+18)\left(x^2+1\right)}=x^2\)
\(\Leftrightarrow2\sqrt{(2x^2+16x+8)\left(x^2+1\right)}=x^2-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3\ge0\\4\left(2x^2+16x+8\right)\left(x^2+1\right)=x^4-6x^2+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{3}\le x\le\sqrt{3}\\4\left(2x^4+16x^3+10x^2+16x+8\right)=x^4-6x^2+9\end{matrix}\right.\)
\(\Leftrightarrow7x^4+64x^3+46x^2+64x+23=0\)