\(\sqrt{2x^2+16x+18}+\sqrt{x^2+1}=2x+4\left(1\right)\)
\(ĐK:x\in R\)
\(pt\left(1\right)\Leftrightarrow2x^2+16x+18+x^2+1+2\sqrt[]{(2x^2+16x+18)\left(x^2+1\right)}=4x^2+16x+16\)
\(\Leftrightarrow3+2\sqrt{(2x^2+16x+18)\left(x^2+1\right)}=x^2\)
\(\Leftrightarrow2\sqrt{(2x^2+16x+8)\left(x^2+1\right)}=x^2-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3\ge0\\4\left(2x^2+16x+8\right)\left(x^2+1\right)=x^4-6x^2+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{3}\le x\le\sqrt{3}\\4\left(2x^4+16x^3+10x^2+16x+8\right)=x^4-6x^2+9\end{matrix}\right.\)
\(\Leftrightarrow7x^4+64x^3+46x^2+64x+23=0\)