Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lil Shroud
Xem chi tiết
Minhmetmoi
3 tháng 2 2022 lúc 15:26

Dễ thấy:

     \(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)

Áp dụng Cô-si:

     \(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)

Do đó:

     \(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)

 

huy nguyễn
Xem chi tiết
Khánh Ngọc
7 tháng 9 2020 lúc 22:21

\(5x^2+10y^2-6xy-4x-10y+14\)

\(=\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)-12\)

\(=\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-5\right)^2-12\ge-12\) đề có nhầm không bạn?

Khách vãng lai đã xóa
hằng hồ thị hằng
Xem chi tiết
Akai Haruma
29 tháng 5 2021 lúc 23:01

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

Akai Haruma
29 tháng 5 2021 lúc 23:04

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

Phạm Linh Chi
Xem chi tiết
迪丽热巴·迪力木拉提
1 tháng 5 2021 lúc 9:41

\(\dfrac{x^2+4}{4}\ge x\)

\(\Leftrightarrow\dfrac{4\left(x^2+4\right)}{4}\ge4x\)

\(\Leftrightarrow x^2+4\ge4x\)

\(\Leftrightarrow x^2-4x+4\ge0\)

\(\Leftrightarrow\left(x-2\right)^2\ge0\) (Luôn đúng)

Vậy đẳng thức ban đầu được chứng minh.

\(\dfrac{x^2+4}{4}\ge x\)

\(\Leftrightarrow\dfrac{x^2+4}{4}\ge\dfrac{4x}{4}\)

\(\Leftrightarrow x^2+4+4x\ge0\)
\(\Leftrightarrow\left(x+2\right)^2\ge0\)    (luôn đúng)

 

Kan
Xem chi tiết
Caryln
Xem chi tiết
Akai Haruma
29 tháng 10 2023 lúc 17:03

Nếu chứng minh $\sqrt{x}+\sqrt{x+1}=1$ thì không có đủ cơ sở để cm bạn nhé. Bạn viết lại đề hoặc bổ sung thêm điều kiện để mọi người trợ giúp tốt hơn.

Đặng Khánh Duy
Xem chi tiết
Akai Haruma
23 tháng 9 2020 lúc 12:12

Lời giải:

$x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}$

$=(x+\frac{1}{2})^2+\frac{3}{4}$

$\geq 0+\frac{3}{4}$

$> 0$

Ta có đpcm.

Khách vãng lai đã xóa
Lại Thị Hồng Liên
Xem chi tiết
Nguyễn Trọng Nghĩa
17 tháng 5 2016 lúc 10:55

 

\(e^x\ge x+1\) với mọi \(x\in R\) \(\Leftrightarrow e^x-x-1\ge0\) với mọi \(x\in R\)

Xét hàm số \(f\left(x\right)=e^x-x-1\) với mọi \(x\in R\)

Ta có : \(f'\left(x\right)=e^x-1=0\Leftrightarrow x=0\)

và : \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(e^x-x-1\right)=+\infty\)

        \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(e^x-x-1\right)=+\infty\)

Xét bảng biến thiên :

x f'(x) f(x) 8 8 8 8 - + + + 0 0 0 - +

Từ bảng biến thiên ta có : \(f\left(x\right)\ge0\) với mọi \(x\in R\)

                              hay : \(e^x-x-1\ge0\) với mọi  \(x\in R\)

=> Điều phải chứng minh  

 

Ngô Quỳnh Nga
Xem chi tiết