Giải phương trình sau:
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)
Giải các bất phương trình sau :
\(a.4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(b.\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
c. \(\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
1. giải phương trình tích:
a) \(\left(x+3\right)\left(x^2+2021\right)=0\)
\(\)2. giải các phương trình sau bằng cách đưa về phương trình tích:
b) \(x\left(x-3\right)+3\left(x-3\right)=0\)
c) \(\left(x^2-9\right)+\left(x+3\right)\left(3-2x\right)=0\)
d) \(3x^2+3x=0\)
e) \(x^2-4x+4=4\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Bài 1:
a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)
mà \(x^2+2021>0\forall x\)
nên x+3=0
hay x=-3
Vậy: S={-3}
Bài 2:
b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy: S={3;-3}
Giải phương trình sau : \(\left|x-2\right|\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
TH1: \(x\ge2\)
\(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)
\(\Leftrightarrow x^4-5x^2=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\sqrt{5}\left(loại\right)\\x=\sqrt{5}\end{matrix}\right.\)
TH2: \(x< 2\)
\(-\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)
\(\Leftrightarrow x^4-5x^2+8=0\)
\(\Leftrightarrow\left(x^2-\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\) (vô nghiệm)
Vậy \(x=\sqrt{5}\)
Giải bất phương trình sau:
\(\dfrac{\left(6-2x\right)^3\left(x+2\right)^4\left(x+6\right)}{\left(x-7\right)^3\left(2-x\right)^2}\le0\)
7,3, -6
ĐKXĐ: \(x\ne7;x\ne2\)
BPT \(\Leftrightarrow f\left(x\right)=\dfrac{\left(6-2x\right)^3\left(x+6\right)}{\left(x-7\right)^3}\le0\)
Lập bảng xét dấu ta có:
Từ đây ta thấy \(-6\le x\le3\) hoặc \(x>7\) thỏa mãn bất phương trình ban đầu.
Vậy...
giải phương trình
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
ĐKXĐ: \(x\notin\left\{-1;-2;-3;-4\right\}\)
Ta có: \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x+4}{\left(x+1\right)\left(x+4\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x+4-x-1}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^2+5x+4}{6\left(x+1\right)\left(x+4\right)}\)
\(\Leftrightarrow\dfrac{18}{6\left(x+1\right)\left(x+4\right)}=\dfrac{x^2+5x+4}{6\left(x+1\right)\left(x+4\right)}\)
Suy ra: \(x^2+5x+4=18\)
\(\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow x^2+7x-2x-14=0\)
\(\Leftrightarrow x\left(x+7\right)-2\left(x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-7;2}
ĐKXĐ: $x \neq -1;-2;-3;-4$
$pt⇔\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}$
$⇔\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}$
$⇔\dfrac{3}{(x+1)(x+4)}=\dfrac{1}{6}$
$⇔x^2+5x+4=18$
$⇔x^2+5x-14=0$
$⇔(x-2)(x+7)=0$
$⇔$ \(\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)(t/m)
Vậy...
Giải các phương trình sau
1. \(\left(x-1\right)\left(x+5\right)\left(x^2+4x+8\right)+40=0\)
2. \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-15=0\)
Giải các phương trình sau:
a \(\left(x+2\right)\left(x+\text{4}\right)\left(x+6\right)\left(x+8\right)+16=0\)
b \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
c \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=0\)
d \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
Bài 2
Giải hệ phương trình sau \(\left\{{}\begin{matrix}x\left(y-2\right)=\left(x+2\right)\left(y-4\right)\\\left(x-3\right)\left(2y+7\right)=\left(2x-7\right)\left(y+3\right)\end{matrix}\right.\)
=>xy-2x=xy-4x+2y-8 và 2xy+7x-6y-21=2xy+6x-7y-21
=>2x-2y=-8 và x+y=0
=>x-y=-4 và x+y=0
=>2x=-4 và x+y=0
=>x=-2 và y=2
Giải phương trình: \(\sqrt{\left(x^2+1\right)\left(x+3\right)\left(x^4+5\right)\left(x+7\right)}=\sqrt{\left(x+2\right)\left(x^4+4\right)\left(x+6\right)\left(x^2+8\right)}\)