Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Haley
Xem chi tiết
Thắng Nguyễn
2 tháng 7 2017 lúc 9:25

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

Thái Doãn Kiên
Xem chi tiết
thuan doan
5 tháng 5 2019 lúc 16:51

sử dụng phương pháp miền giá trị

Thái Doãn Kiên
5 tháng 5 2019 lúc 20:32

bạn nói rõ hơn được không?

Got many jams
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 10:16

ĐK: \(x\ge-\dfrac{5}{2}\)

\(\Leftrightarrow3x^2-4x-4=2x+5\)

\(\Leftrightarrow3x^2-6x-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (thỏa mãn)

b.

ĐKXĐ: \(3\le x\le8\)

\(\Leftrightarrow-x^2+11x-24-\sqrt{-x^2+11x-24}-2=0\)

Đặt \(\sqrt{-x^2+11x-24}=t\ge0\)

\(\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{-x^2+11x-24}=2\)

\(\Leftrightarrow-x^2+11x-28=0\Rightarrow\left[{}\begin{matrix}x=7\\x=4\end{matrix}\right.\)

Minh Tuấn Phạm
Xem chi tiết
Phạm Thị Thùy Dương
Xem chi tiết
Nguyễn Trần Thành Đạt
10 tháng 8 2021 lúc 7:57

a) <

b) <

c) >

d) <

      a <

            b <

                           c >

                   d <

tử
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2022 lúc 0:27

Sửa đề; \(\sqrt{4x-12}-5\sqrt{9x-27}=-26\)

\(\Leftrightarrow2\sqrt{x-3}-5\cdot3\sqrt{x-3}=-26\)

\(\Leftrightarrow\sqrt{x-3}=2\)

=>x-3=4

=>x=7

hoàng thuỷ
Xem chi tiết
kakaruto ff
Xem chi tiết
Minh Hiếu
27 tháng 9 2023 lúc 21:24

a) \(6=\sqrt[3]{6^3}=\sqrt{216}>\sqrt[3]{208}=2\sqrt[3]{26}\)

b) \(2\sqrt[3]{6}=\sqrt[3]{2^3.6}=\sqrt[3]{48}>\sqrt[3]{47}\)

Nguyễn Minh Quân
Xem chi tiết
Akai Haruma
3 tháng 8 2021 lúc 18:43

1. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow 4x=\sqrt{(3x+1)^2}$

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x)^2=(3x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x-3x-1)(4x+3x+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-1)(7x+1)=0\end{matrix}\right.\Leftrightarrow x=1\)

Vậy $x=1$ là nghiệm của pt.

 

Akai Haruma
3 tháng 8 2021 lúc 18:44

2. ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{5+x}+\frac{4}{3}.\sqrt{9}.\sqrt{x+5}=0$

$\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=0$

$\Leftrightarrow 3\sqrt{x+5}=0$

$\Leftrightarrow \sqrt{x+5}=0$

$\Leftrightarrow x=-5$

 

Akai Haruma
3 tháng 8 2021 lúc 18:46

3. 

$\sqrt{x^2+x+1}=x+2$

\(\Leftrightarrow \left\{\begin{matrix} x+2\geq 0\\ x^2+x+1=(x+2)^2=x^2+4x+4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 3x=-3\end{matrix}\right.\Leftrightarrow x=-1\)

Vậy $x=-1$ là nghiệm của pt.