Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Minh
Xem chi tiết
nguyễn thị mai linh
30 tháng 3 2020 lúc 15:34
https://i.imgur.com/iX7y3qX.jpg
Khách vãng lai đã xóa
nguyễn thị mai linh
30 tháng 3 2020 lúc 15:35
https://i.imgur.com/GMDpx0f.jpg
Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
tthnew
27 tháng 4 2020 lúc 18:57

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

bach nhac lam
25 tháng 4 2020 lúc 11:57

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!

Văn Thắng Hồ
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 8 2020 lúc 12:50

1.

ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow\sqrt{2x-1}-1+\sqrt{x^2+3}-2+x-1=0\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}+\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+3}+2}+x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{\sqrt{2x-1}+1}+\frac{x+1}{\sqrt{x^2+3}+2}+1\right)=0\)

\(\)\(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
16 tháng 8 2020 lúc 12:53

2.

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x^2-3x-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a=b+\frac{1}{2}\left(a^2-b^2\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(1\right)\\a=2-b\left(2\right)\end{matrix}\right.\)


\(\left(1\right)\Leftrightarrow x^2+x+1=x^2-3x-1\)

\(\Leftrightarrow x=\frac{1}{2}\)

\(\left(2\right)\Leftrightarrow\sqrt{x^2+x+1}=2-\sqrt{x^2-3x-1}\)

\(\Rightarrow x^2+x+1=x^2-3x+3-4\sqrt{x^2-3x-1}\)

\(\Rightarrow2\sqrt{x^2-3x-1}=1-2x\)

\(\Rightarrow4x^2-12x-4=4x^2-4x+1\)

\(\Rightarrow x=-\frac{5}{8}\)

Do các bước biến đổi ko tương đương nên cần thay nghiệm này vào pt ban đầu để kiểm tra (bạn tự kiểm tra)

Nguyễn Việt Lâm
16 tháng 8 2020 lúc 12:58

3.

- Với \(x=\left\{16;17\right\}\) là 2 nghiệm của pt

- Với \(x< 16\):

\(\left\{{}\begin{matrix}\left|x-16\right|^4>0\\\left|x-17\right|>1\Rightarrow\left|x-17\right|^3>1\end{matrix}\right.\)

\(\Rightarrow\left|x-16\right|^4+\left|x-17\right|^3>1\)

Pt vô nghiệm

- Với \(x>17\Rightarrow\left\{{}\begin{matrix}\left|x-17\right|^3>0\\\left|x-16\right|>1\Rightarrow\left|x-16\right|^4>1\end{matrix}\right.\)

\(\Rightarrow\left|x-16\right|^4+\left|x-17\right|^3>1\)

Pt vô nghiệm

- Với \(16< x< 17\Rightarrow\left\{{}\begin{matrix}0< \left|x-16\right|< 1\\0< \left|17-x\right|< 1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-16\right|^4< x-16\\\left|17-x\right|^3< 17-x\end{matrix}\right.\)

\(\Rightarrow\left|x-16\right|^4+\left|x-17\right|^3< x-16+17-x=1\) (vô nghiệm)

Vậy pt có đúng 2 nghiệm \(\left[{}\begin{matrix}x=16\\x=17\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:34

a/ ĐKXĐ: \(-\frac{3}{2}\le x\le4\)

\(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(x+7-2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-10\)

\(\Leftrightarrow\sqrt{2x+3}+\sqrt{4-x}=3\left(x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-52\)

Đặt \(\sqrt{2x+3}+\sqrt{4-x}=a>0\Rightarrow a^2=x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\)

Phương trình trở thành:

\(a=3a^2-52\Leftrightarrow3a^2-a-52=0\Rightarrow\left[{}\begin{matrix}a=-4\left(l\right)\\a=\frac{13}{3}\end{matrix}\right.\)

\(\sqrt{2x+3}+\sqrt{4-x}=\frac{13}{3}\)

Phương trình này vô nghiệm nên ko muốn giải tiếp, bạn bình phương lên và chuyển vế thôi :(

b/ ĐKXĐ: \(-\frac{1}{4}\le x\le1\)

Đặt \(\sqrt{4x+1}+2\sqrt{1-x}=a>0\Rightarrow a^2=5+4\sqrt{-4x^2+3x+1}\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}\)

Pt trở thành:

\(a+10\left(\frac{a^2-5}{4}\right)=13\)

\(\Leftrightarrow5a^2+2a-51=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{17}{5}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}=1\)

\(\Leftrightarrow-4x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{4}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:40

c/ \(\Leftrightarrow x^2\left(x^2+2\right)=12-x\sqrt{2x^2+4}\)

\(\Leftrightarrow x^2\left(2x^2+4\right)=24-2x\sqrt{2x^2+4}\)

Đặt \(x\sqrt{2x^2+4}=a\) ta được:

\(a^2=24-2a\Leftrightarrow a^2+2a-24=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=4\left(x>0\right)\\x\sqrt{2x^2+4}=-6\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2\left(2x^2+4\right)=16\\x^2\left(2x^2+4\right)=36\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-8=0\\x^4+2x^2-18=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(l\right)\\x^2=\sqrt{19}-1\\x^2=-\sqrt{19}-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}< 0\left(l\right)\\x=-\sqrt{\sqrt{19}-1}\\x=\sqrt{\sqrt{19}-1}>0\left(l\right)\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:52

d/ ĐKXĐ: \(x\ge1\)

Nhân cả tử và mẫu của vế phải với liên hợp của nó ta được:

\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x-1}\right)^2-3=\frac{\sqrt{x+1}+\sqrt{x+1}}{2}\)

Đặt \(\sqrt{x+1}+\sqrt{x-1}=a>0\)

\(\Rightarrow a^2-3=\frac{a}{2}\Rightarrow2a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{x-1}=2\)

\(\Leftrightarrow x+\sqrt{x^2-1}=2\)

\(\Leftrightarrow\sqrt{x^2-1}=2-x\) (\(x\le2\))

\(\Leftrightarrow x^2-1=x^2-4x+4\)

\(\Rightarrow x=\frac{5}{4}\)

Khách vãng lai đã xóa
Hải Nam Xiumin
Xem chi tiết
Hậu Duệ Mặt Trời
20 tháng 7 2016 lúc 20:52

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

Hải Nam Xiumin
21 tháng 7 2016 lúc 6:58

cảm ơn bạn nha ok

Nguyễn Mai Quỳnh Anh
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Nguyễn Thị Ngọc Hân
1 tháng 8 2020 lúc 20:00

a) ĐK x>2

Nguyễn Lê Phước Thịnh
1 tháng 8 2020 lúc 20:04

a) Để giá trị của biểu thức \(\frac{x}{x^2-4}+\sqrt{x-2}\)xác định được thì

\(\left\{{}\begin{matrix}x^2-4\ne0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\notin\left\{2;-2\right\}\\x\ge2\end{matrix}\right.\Leftrightarrow x>2\)

b) Để giá trị của biểu thức \(\frac{\sqrt{x}}{\left|x\right|-1}\) xác định được thì

\(\left\{{}\begin{matrix}x\ge0\\\left|x\right|-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left|x\right|\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\notin\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow0\le x\ne1\)

Hồ Minh Thành
Xem chi tiết
Harry Anderson
Xem chi tiết