Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

giải pt

a) \(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(\sqrt{2x+3}-\sqrt{4-x}\right)^2-10\)

b) \(\sqrt{4x+1}+2\sqrt{1-x}+10\sqrt{-4x^2+3x+1}=13\)

c) \(\left(x^2+1\right)^2=13-x\sqrt{2x^2+4}\)

d) \(\left(\sqrt{x+1}+\sqrt{x-1}\right)^2-3=\frac{1}{\sqrt{x+1}-\sqrt{x-1}}\)

e) \(\left(\frac{2x-3}{\sqrt{x^2-1}}+2\right)\left(\frac{1}{\sqrt{x-1}}-\frac{1}{\sqrt{x+1}}\right)=\frac{1}{x^2-1}\)

Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:34

a/ ĐKXĐ: \(-\frac{3}{2}\le x\le4\)

\(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(x+7-2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-10\)

\(\Leftrightarrow\sqrt{2x+3}+\sqrt{4-x}=3\left(x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-52\)

Đặt \(\sqrt{2x+3}+\sqrt{4-x}=a>0\Rightarrow a^2=x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\)

Phương trình trở thành:

\(a=3a^2-52\Leftrightarrow3a^2-a-52=0\Rightarrow\left[{}\begin{matrix}a=-4\left(l\right)\\a=\frac{13}{3}\end{matrix}\right.\)

\(\sqrt{2x+3}+\sqrt{4-x}=\frac{13}{3}\)

Phương trình này vô nghiệm nên ko muốn giải tiếp, bạn bình phương lên và chuyển vế thôi :(

b/ ĐKXĐ: \(-\frac{1}{4}\le x\le1\)

Đặt \(\sqrt{4x+1}+2\sqrt{1-x}=a>0\Rightarrow a^2=5+4\sqrt{-4x^2+3x+1}\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}\)

Pt trở thành:

\(a+10\left(\frac{a^2-5}{4}\right)=13\)

\(\Leftrightarrow5a^2+2a-51=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{17}{5}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}=1\)

\(\Leftrightarrow-4x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{4}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:40

c/ \(\Leftrightarrow x^2\left(x^2+2\right)=12-x\sqrt{2x^2+4}\)

\(\Leftrightarrow x^2\left(2x^2+4\right)=24-2x\sqrt{2x^2+4}\)

Đặt \(x\sqrt{2x^2+4}=a\) ta được:

\(a^2=24-2a\Leftrightarrow a^2+2a-24=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=4\left(x>0\right)\\x\sqrt{2x^2+4}=-6\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2\left(2x^2+4\right)=16\\x^2\left(2x^2+4\right)=36\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-8=0\\x^4+2x^2-18=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(l\right)\\x^2=\sqrt{19}-1\\x^2=-\sqrt{19}-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}< 0\left(l\right)\\x=-\sqrt{\sqrt{19}-1}\\x=\sqrt{\sqrt{19}-1}>0\left(l\right)\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:52

d/ ĐKXĐ: \(x\ge1\)

Nhân cả tử và mẫu của vế phải với liên hợp của nó ta được:

\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x-1}\right)^2-3=\frac{\sqrt{x+1}+\sqrt{x+1}}{2}\)

Đặt \(\sqrt{x+1}+\sqrt{x-1}=a>0\)

\(\Rightarrow a^2-3=\frac{a}{2}\Rightarrow2a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{x-1}=2\)

\(\Leftrightarrow x+\sqrt{x^2-1}=2\)

\(\Leftrightarrow\sqrt{x^2-1}=2-x\) (\(x\le2\))

\(\Leftrightarrow x^2-1=x^2-4x+4\)

\(\Rightarrow x=\frac{5}{4}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:57

e/ ĐKXĐ: \(x>1\)

\(\Leftrightarrow\left(\frac{2x-3+2\sqrt{x^2-1}}{\sqrt{x^2-1}}\right)\left(\frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x^2-1}}\right)=\frac{1}{x^2-1}\)

\(\Leftrightarrow\left(2x-3+2\sqrt{x^2-1}\right)\left(\sqrt{x+1}-\sqrt{x+1}\right)=1\)

\(\Leftrightarrow2\left(2x+2\sqrt{x^2-1}-3\right)=\sqrt{x+1}+\sqrt{x-1}\)

Đặt \(\sqrt{x+1}+\sqrt{x-1}=a>0\)

\(\Rightarrow a^2=2x+2\sqrt{x^2-1}\) pt trở thành:

\(2\left(a^2-3\right)=a\)

\(\Leftrightarrow2a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

Ủa đến đây mới thấy nó giống hệt câu d?

Khách vãng lai đã xóa
Julian Edward
8 tháng 11 2019 lúc 14:13

Nguyễn Việt Lâm giúp mk vsss

Khách vãng lai đã xóa

Các câu hỏi tương tự
Võ Hồng Phúc
Xem chi tiết
Hoàng
Xem chi tiết
Julian Edward
Xem chi tiết
Tran Tuan
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
tran duc huy
Xem chi tiết