\(1-5sin\left(\frac{x}{2}\right)+2cos^2\left(\frac{x}{2}\right)=0\)
giải phương trình lượng giác
\(2cos^2x-1=sin3x\)
\(2sin^4x-5sin^3x-sin^2x+3sinx+1=0\)
\(sin^6x+cos^6x=2cos^2\left(\frac{\pi}{4}-x\right)\)
a/
\(\Leftrightarrow cos2x=sin3x\)
\(\Leftrightarrow cos2x=cos\left(\frac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-3x+k2\pi\\2x=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{10}+\frac{k2\pi}{5}\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow\left(sinx-1\right)\left(2sinx+1\right)\left(sin^2x-2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{2}\\sinx=1-\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow x=...\)
c/
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1+cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow1-3sin^2x.cos^2x=1+sin2x\)
\(\Leftrightarrow-\frac{3}{4}sin^22x=sin2x\)
\(\Leftrightarrow3sin^22x+4sin2x=0\)
\(\Leftrightarrow sin2x\left(3sin2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=-\frac{4}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{k\pi}{2}\)
Rút gọn biểu thức
\(A=2sin\left(x-\frac{\pi}{2}\right)-2cos\left(5\pi+x\right)+tan^2\left(x-9\pi\right)-\frac{1}{cos^2\left(\pi+x\right)}\), giả sử cosx\(\ne\)0
\(A=-2cosx+2cosx+tan^2x-\frac{1}{cos^2x}\)
\(=tan^2x-\left(1+tan^2x\right)=-1\)
2sin(π2+x)+sin(3π−x)+sin(3π2+x)+cos(π2+x)2sin(π2+x)+sin(3π−x)+sin(3π2+x)+cos(π2+x)
=2cosx+sinx−cosx−sinx=2cosx+sinx−cosx−sinx
=cosx
\(\frac{cos^2X-2cos\left(X+\frac{3Π}{4}\right)Sin\left(3x-\frac{Π}{4}\right)-2}{2cosx-\sqrt{2}}=0\)
điều kiện : cosx\(\ne\)\(\frac{1}{\sqrt{2}}\)=> x\(\ne\)\(\pm\)\(\frac{\pi}{4}\)+2k\(\pi\), k\(\in\)Z
pt<=> tử số =0
<=>cos2x-sin(3x-\(\frac{\pi}{4}\)+x+\(\frac{3\pi}{4}\))-sin(3x-\(\frac{\pi}{4}\)-x-\(\frac{3\pi}{4}\))-2=0
<=> cos2x-sin(x+\(\frac{\pi}{2}\))-sin(2x-\(\pi\))-2=0
<=> cos2x-cosx+sin2x-2sin2x-2cos2x=0
<=>-cos2x-coxs+2sinx.cosx-2sin2x=0
đến đây bạn nhóm lại ra nghiệm rồi kiểm tra đk là xong
1) \(sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right).tan^2x-cos^2\frac{x}{2}=0\)
2) \(tanx=sin^2x\left(c-\frac{\pi}{2010}\right)+cos^2\left(2x+\frac{\pi}{2010}\right)+sinx.sin\left(3x+\frac{\pi}{1005}\right)\)
3) \(1+2cosx\left(sinx-1\right)+\sqrt{2}sinx+4cosx.sin^2\frac{x}{2}=0\)
4) \(3cos4x-8cos^6x+2cos4x=3\)
5) \(1+sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)\)
6) \(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-4\sqrt{3}cos^2x.sinx.cos2x\)
7) \(\frac{tan^2x+tanx}{tan^2x+1}=\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{4}\right)\)
8) \(cos^4x+sin^4x+cos\left(x-\frac{\pi}{4}\right).sin\left(3x-\frac{\pi}{4}\right)-\frac{3}{2}=0\)
Câu 2 bạn coi lại đề
3.
\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)
\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)
\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm
5.
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)
\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)
\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2sin^3x-sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)
\(\Leftrightarrow...\)
6.
\(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-2\sqrt{3}cosx.sin2x.cos2x\)
\(\Leftrightarrow sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-\sqrt{3}cosx.sin4x\)
\(\Leftrightarrow sin4x\left(sinx+\sqrt{3}cosx\right)=\sqrt{2}sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow sin4x\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin4x.sin\left(x+\frac{\pi}{3}\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)
\(\Leftrightarrow\left(sin4x-\frac{\sqrt{2}}{2}\right)sin\left(x+\frac{\pi}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{3}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
1) \(4cos^24x+2\left(\sqrt{3}+\sqrt{2}\right)cos4x+\sqrt{6}=0\)
2) \(cos4x+2+sin\left(2x+\frac{3\pi}{2}\right)=2cos^2x\)
3) \(sin\left(x+\frac{\pi}{3}\right)+\sqrt{3}sin\left(\frac{\pi}{6}-x\right)=1\)
4) \(2cos\left(4x-\frac{\pi}{3}\right)+4cos2x=-1\)
5) \(cos^22x+cos^23x=sin^2x\)
6) \(sinx+\left(\sqrt{2}-1\right)cosx=1\)
7) \(cos2x-\left(\sqrt{3}+1\right)cosx+\frac{2+\sqrt{3}}{2}=0\)
1.
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-\frac{\sqrt{3}}{2}\\cos4x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=...\)
(Cứ bấm máy giải pt bậc 2 như bt, nó cho 2 nghiệm rất xấu, bạn lưu 2 nghiệm vào 2 biến A; B rồi thoát ra ngoài MODE-1, tính \(\sqrt{A^2}\) và \(\sqrt{B^2}\) sẽ ra dạng căn đẹp của 2 nghiệm, lưu ý dấu so với nghiệm ban đầu)
2.
\(\Leftrightarrow cos4x+1+sin\left(2x-\frac{\pi}{2}\right)=cos2x\)
\(\Leftrightarrow2cos^22x-cos2x=cos2x\)
\(\Leftrightarrow cos^22x-cos2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)
3.
\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left[\frac{\pi}{2}-\left(\frac{\pi}{6}-x\right)\right]=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{3}+\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x+\frac{2\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow...\)
4.
\(\Leftrightarrow2cos4x.cos\left(\frac{\pi}{3}\right)+2sin4x.sin\left(\frac{\pi}{3}\right)+4cos2x=-1\)
\(\Leftrightarrow cos4x+\sqrt{3}sin4x+4cos2x+1=0\)
\(\Leftrightarrow2cos^22x+2\sqrt{3}sin2x.cos2x+4cos2x=0\)
\(\Leftrightarrow2cos2x\left(cos2x+\sqrt{3}sin2x+2\right)=0\)
\(\Leftrightarrow cos2x\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x+1\right)=0\)
\(\Leftrightarrow cos2x\left[sin\left(2x+\frac{\pi}{6}\right)+1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin\left(2x+\frac{\pi}{6}\right)=-1\end{matrix}\right.\)
5.
\(cos^22x+\frac{1}{2}+\frac{1}{2}cos6x=\frac{1}{2}-\frac{1}{2}cos2x\)
\(\Leftrightarrow cos^22x+\frac{1}{2}\left(cos6x+cos2x\right)=0\)
\(\Leftrightarrow cos^22x+cos4x.cos2x=0\)
\(\Leftrightarrow cos2x\left(cos2x+cos4x\right)=0\)
\(\Leftrightarrow cos2x\left(2cos^22x+cos2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-1\\cos2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giair các pt lượng giác sau:
1) \(sin\left(x-\frac{\pi}{4}\right)\left(2cos+\sqrt{2}\right)tan2x=0\)
2) \(tan2x.sinx+3\left(sin-\sqrt{3}tan2x\right)-3\sqrt{3}=0\)
3) \(\frac{cos2x}{sin\left(x+\frac{3\pi}{4}\right)}=\frac{sin\left(x+\frac{3\pi}{4}\right)}{cos2x}\)
4) \(\left(\frac{tanx-1}{tanx+1}+cot2x\right)\left(3tan-\sqrt{3}\right)=0;0< x< \pi\)
a/ ĐKXĐ: \(cos2x\ne0\)
\(\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Rightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
Pt tương đương:
\(\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\2cosx+\sqrt{2}=0\\sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\cosx=cos\left(\frac{3\pi}{4}\right)\\2x=k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\left(l\right)\\x=\frac{3\pi}{4}+k2\pi\left(l\right)\\x=-\frac{3\pi}{4}+k2\pi\left(l\right)\\x=\frac{k\pi}{2}\end{matrix}\right.\) \(\Rightarrow x=\frac{k\pi}{2}\)
b/
ĐKXĐ: \(x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
\(\Leftrightarrow tan2x.sinx+3sinx-\sqrt{3}tan2x-3\sqrt{3}=0\)
\(\Leftrightarrow sinx\left(tan2x+3\right)-\sqrt{3}\left(tan2x+3\right)=0\)
\(\Leftrightarrow\left(sinx-\sqrt{3}\right)\left(tan2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\sqrt{3}>1\left(vn\right)\\tan2x=-3\end{matrix}\right.\)
\(\Rightarrow2x=arctan\left(-3\right)+k\pi\)
\(\Rightarrow x=\frac{arctan\left(-2\right)}{2}+\frac{k\pi}{2}\)
c/
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x+\frac{3\pi}{4}\right)\ne0\\cos2x\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+\frac{3\pi}{4}\ne k\pi\\2x\ne\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne-\frac{3\pi}{4}+k\pi\\x\ne\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\) \(\Rightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
Pt tương đương:
\(cos^22x=sin^2\left(x+\frac{3\pi}{4}\right)\)
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos4x=\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{3\pi}{2}\right)\)
\(\Leftrightarrow cos4x=-cos\left(2x+\frac{3\pi}{2}\right)=cos\left(2x+\frac{\pi}{2}\right)\)
\(\Rightarrow\left[{}\begin{matrix}4x=2x+\frac{\pi}{2}+k2\pi\\4x=-2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\left(l\right)\\x=-\frac{\pi}{12}+\frac{k\pi}{3}\end{matrix}\right.\)
GPT
a) \(sin2x-cosx=0\)
b) \(\left(2cos\frac{x}{2}-1\right)\left(sin\frac{x}{2}+2\right)=0\)
c) \(\left(\sqrt{3}tanx+1\right)\left(sin^2x+1\right)=0\)
d) \(sinx.cosx.cos2x=0\)
e) \(8cos2x.sin2x.cos4x=-\sqrt{2}\)
a.
\(\Leftrightarrow sin2x=cosx\)
\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
b.
\(\Leftrightarrow\left[{}\begin{matrix}cos\frac{x}{2}=\frac{1}{2}\\sin\frac{x}{2}=-2< -1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}=\frac{\pi}{3}+k2\pi\\\frac{x}{2}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k4\pi\\x=-\frac{2\pi}{3}+k4\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow tanx=-\frac{1}{\sqrt{3}}\)
\(\Leftrightarrow x=-\frac{\pi}{6}+k\pi\)
d.
\(\Leftrightarrow\frac{1}{2}sin2x.cos2x=0\)
\(\Leftrightarrow\frac{1}{4}sin4x=0\)
\(\Leftrightarrow sin4x=0\)
\(\Leftrightarrow x=\frac{k\pi}{4}\)
e.
\(\Leftrightarrow4sin4x.cos4x=-\sqrt{2}\)
\(\Leftrightarrow2sin8x=-\sqrt{2}\)
\(\Leftrightarrow sin8x=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}8x=-\frac{\pi}{4}+k2\pi\\8x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{32}+\frac{k\pi}{4}\\x=\frac{5\pi}{32}+\frac{k\pi}{4}\end{matrix}\right.\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(x^2-3x=0\)
đâu phải toán lớp 1
bạn chọn nhầm à
Với giá trị nào của m thì pt \(sin\left(x+\frac{\pi}{2}\right)+2cos\left(x+\pi\right)+m=0\) có đúng 3 nghiệm phân biệt thuộc đoạn \(\left[0;\frac{7\pi}{2}\right]\)
\(\Leftrightarrow cosx-2cosx+m=0\)
\(\Leftrightarrow cosx=-m\)
Từ đường tròn lượng giác ta thấy để pt có đúng 3 nghiệm pb thuộc \(\left[0;\frac{7\pi}{2}\right]\Rightarrow0\le-m< 1\Rightarrow-1< m\le0\)