\(\Leftrightarrow cosx-2cosx+m=0\)
\(\Leftrightarrow cosx=-m\)
Từ đường tròn lượng giác ta thấy để pt có đúng 3 nghiệm pb thuộc \(\left[0;\frac{7\pi}{2}\right]\Rightarrow0\le-m< 1\Rightarrow-1< m\le0\)
\(\Leftrightarrow cosx-2cosx+m=0\)
\(\Leftrightarrow cosx=-m\)
Từ đường tròn lượng giác ta thấy để pt có đúng 3 nghiệm pb thuộc \(\left[0;\frac{7\pi}{2}\right]\Rightarrow0\le-m< 1\Rightarrow-1< m\le0\)
Cho phương trình \(3\sin^2x+2\left(m+1\right)sinx.cosx+m-2=0\)Số giá trị nguyên của m để trên khoảng\(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\)phương trình có hai nghiệm \(x_1,x_2\) với\(x_1\in\left(-\frac{\pi}{2};0\right),x_2\in\left(0;\frac{\pi}{2}\right)\)là
Có bao nhiêu m nguyên để pt có nghiệm
a) \(sin^6x+cos^6x+3sinx.cosx-\dfrac{m}{4}+2=0\)
b) \(\left(sinx-1\right)\left[2cos^2x-\left(2m+1\right)cosx+m\right]=0\) có 4 nghiệm phân biệt \(\in\left[0;2\pi\right]\)
Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\)
Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).
Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).
Câu 4: Giá trị của m để phương trình \(cos2x-\left(2m+1\right)sinx-m-1=0\) có nghiệm trên khoảng \(\left(0;\pi\right)\) là \(m\in[a;b)\) thì a+b là?
Câu 5: Điều kiện cần và đủ để phương trình \(msinx-3cosx=5\) có nghiệm là \(m\in(-\infty;a]\cup[b;+\infty)\) với \(a,b\in Z\). Tính a+b.
Câu 6: Điều kiện để phương trình \(msinx-3cosx=5\) có nghiệm là?
Câu 7: Số nghiệm để phương trình \(sin2x+\sqrt{3}cos2x=\sqrt{3}\) trên khoảng \(\left(0;\dfrac{\pi}{2}\right)\) là?
Câu 8: Tập giá trị của hàm số \(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) là?
Câu 9: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) dể phương trình \(\left(m+1\right)sin^2-sin2x+cos2x=0\) có nghiệm?
Câu 10: Có bao nhiêu giá trị nguyên của tham số m để phương trình \(sin2x-cos2x+|sinx+cosx|-\sqrt{2cos^2x+m}-m=0\) có nghiệm thực?
Cho phương trình (cosx-1)(sinx+m)=0. Tìm các giá trị m để pt có đúng 2 nghiệm phân biệt thuộc \(\left[0;\pi\right]\)
Bài 1: Tìm số nghiệm thuộc \(\left(-\pi;\pi\right)\) của phương trình \(tan\left(2x-\frac{\pi}{4}\right)=tan\left(x+\frac{\pi}{3}\right)\)
Bài 2: Nghiệm âm lớn nhất của phương trình \(cos\left(3x-\frac{\pi}{3}\right)=0\)
Bài 3: Tổng nghiêm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình \(sin\left(x-\frac{3\pi}{4}\right)=\frac{\sqrt{3}}{2}\)
Biện luận số nghiệm trong \(\left[-\pi;\frac{4\pi}{3}\right]\)của pt: \(\sin x\left(\cos x-m\right)=0\)
Mọi người giúp em với, em cảm ơn ạ
Bài tập quy về dạng phương trình cơ bản:
\(1.\sin\left(x-\frac{\pi}{3}\right)+2cos\left(x-\frac{\pi}{6}\right)=0\);
\(2.\sin^23x=cos^2x\);
\(3.sin\left(2x-\frac{7\pi}{2}\right)+cos2x=1\)
\(4.\sqrt{2}cos\left(x-\frac{3\pi}{4}\right)=1+sinx\)
\(5.\sin\left(2x-\frac{7\pi}{2}\right)+cós2x=1\)
Tìm m để pt sau có nghiệm \(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\) :
a) \(\cos^2x-2m\cos x+4\left(m-1\right)=0\)
b) \(4\sin^2\frac{x}{2}+2\sin\frac{x}{2}+m-2=0\)
Tìm m để phương trình \(sin4x\left(sinx+cosx\right)+msin2x=36\sqrt{2}\left(x-\frac{\pi}{4}\right)\) có 3 nghiệm phân biệt thuộc đoạn \(\left[0;\pi\right]\)