Biểu thức căn âm 2x +3 có nghĩa khi nào
với giá trị nào của x thì biểu thức có nghĩa:
f) căn bậc tất cả 2x-1/2-x
g) căn bậc x-3/ căn bậc 5-x h
h) căn bậc x-1.căn bậc x+5
f: ĐKXĐ: \(\dfrac{2x-1}{2-x}>=0\)
=>\(\dfrac{2x-1}{x-2}< =0\)
=>\(\dfrac{1}{2}< =x< 2\)
g: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>0\end{matrix}\right.\Leftrightarrow3< =x< 5\)
h: ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\x+5>=0\end{matrix}\right.\Leftrightarrow x>=1\)
Biểu thức căn âm 2x +3 có nghĩa khi nào.
Để căn thức \(\sqrt{-2x+3}\) có nghĩa thì \(-2x+3\ge0\)
\(\Leftrightarrow-2x\ge-3\)
hay \(x\le\frac{3}{2}\)
Vậy: để căn thức \(\sqrt{-2x+3}\) có nghĩa thì \(x\le\frac{3}{2}\)
\(\sqrt{-2x+3}\) hay là \(\sqrt{-\left(2x+3\right)}\) vậy bạn?
Tìm x để các biểu thức sau có nghĩa e, căn 2x-5 f, căn -3+6 g, căn x+4 trên -5 h, căn 7 trên 4-2x
e: ĐKXĐ: \(x\ge\dfrac{5}{2}\)
g: ĐKXĐ: \(x\le-4\)
biểu thức căn bặc hai của 2x+3 xác định khi nào
\(ĐK:2x+3\ge0\Leftrightarrow x\ge-\dfrac{3}{2}\)
với giá trị nào của x thì căn thức sau có nghĩa
\(\sqrt{\dfrac{x^2+2x+4}{2x-3}}\)
Tìm điều kiện để biểu thức chứa căn thức bậc hai có nghĩa
a) Căn của x2 - 8x - 9
b) Căn của 4 - 9x2
c) Căn của 2x - 3/2x2 + 1
d) Căn của x - 6/x-2
a,Để \(\sqrt{x^2-8x-9}\) có nghĩ thì
\(x^2-8x-9\ge0\)
\(\Leftrightarrow x^2+x-9x-9\ge0\)
\(\Leftrightarrow x\left(x+1\right)-9\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-9\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\x\ge9\end{cases}\Rightarrow}x\ge9\)
\(or\orbr{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\le9\end{cases}\Rightarrow}x\le-1\)
\(Để\sqrt{4-9x^2}\text{có nghĩa}\)
\(\Rightarrow4-9x^2\ge0\)
\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)\ge0\)
\(\Leftrightarrow-\frac{2}{3}\le x\le\frac{2}{3}\)
c,Để \(\sqrt{\frac{2x-3}{2x^2+1}}\)có nghĩa thì
\(\Rightarrow\orbr{\begin{cases}2x-3\ge0\\2x^2+1>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x\ge3\\2x^2>-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge\frac{3}{2}\\x^2>-\frac{1}{2}\text{(luôn đúng)}\end{cases}}\)
\(\Rightarrow x\ge\frac{3}{2}\)
Bài 1. Tìm điệu kiện của x để biểu thức A= căn 5+4x +căn 7-3x có nghĩa
Bài 2 Tìm x thỏa mãn:
a) căn 4x-4 +căn 9x-9- căn 25x-25 =7
b)căn 2x^2-3 =4 rất mong mọi người giúp đỡ ạ
\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)
Bài 2:
a) \(\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(đk:x\ge1\right)\)
\(\Leftrightarrow2\sqrt{x-1}+3\sqrt{x-2}-5\sqrt{x-1}=7\)
\(\Leftrightarrow0=7\left(VLý\right)\)
Vậy \(S=\varnothing\)
b) \(\sqrt{2x^2-3}=4\left(đk:-\sqrt{\dfrac{3}{2}}\ge x\ge\sqrt{\dfrac{3}{2}}\right)\)
\(\Leftrightarrow2x^2-3=16\)
\(\Leftrightarrow2x^2=19\Leftrightarrow x^2=\dfrac{19}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
Tìm đk để căn thức có nghĩa: Căn 7x -căn 2x-3
với các giá trị nào của x thì các căn thức kia có nghĩa
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}\)
\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}=\sqrt{\dfrac{3x-2}{\left(x-2\right)^2}}\)
Có nghĩa khi:
\(\left\{{}\begin{matrix}\dfrac{3x-2}{\left(x-2\right)^2}\ge0\\\left(x-2\right)^2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ne2\end{matrix}\right.\)
____________________
\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
Có nghĩa khi:
\(\dfrac{2x-3}{2x^2+1}\ge0\)
\(\Leftrightarrow2x-3\ge0\)
\(\Leftrightarrow x\ge\dfrac{3}{2}\)
a: ĐKXĐ: (3x-2)/(x^2-2x+4)>=0
=>3x-2>=0
=>x>=2/3
b: ĐKXĐ: (2x-3)/(2x^2+1)>=0
=>2x-3>=0
=>x>=3/2