Tìm nghiệm của \(h\left(x\right)=x^3+8\)
Tìm nghiệm của đa thức:
\(B=x+2\left(x+1\right)^2-2\)
\(C=x^4.\left(x+2\right)-x^2\)
\(D=3\left|x+2\right|+6\left(x+2\right)^8+6\)
\(H=4\left(x+5\right)^2-2\left|x+3\right|+12\)
Tìm các giá trị của tham số m để phương trình \(x^3-\left(m+2\right)\left(x+2\right)+8=0\) có ba nghiệm phân biệt:
Pt\(\Leftrightarrow x^3-x\left(m+2\right)-2m+4=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+2-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2-2x+2-m=0\left(1\right)\end{matrix}\right.\)
Để pt ban đầu có 3 nghiệm pb khi pt (3) có hai nghiệm pb khác -2
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(-2\right)^2-2\left(-2\right)+2-m\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\10-m\ne0\end{matrix}\right.\)\(\Rightarrow m>1;m\ne10\)
Vây...
tìm nghiệm của đa thức sau
a,\(3x-\dfrac{2}{5}\)
b,\(\left(x-3\right)\).\(\left(2x+8\right)\)
c, \(3.x^2\)-\(x\)-\(4\)
mn giúp mik vs ạ , mik c.on trc ạ
a)\(3x-\dfrac{2}{5}=0=>3x=\dfrac{2}{5}=>x=\dfrac{2}{15}\)
b)\(\left(x-3\right)\left(2x+8\right)=0=>\left[{}\begin{matrix}x-3=0\\2x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
c)\(3x^2-x-4=0=>3x^2+3x-4x-4=0=>\left(3x-4\right)\left(x+1\right)=0\)
\(=>\left[{}\begin{matrix}3x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-1\end{matrix}\right.\)
Tìm nghiệm nguyên của phương trình
a)\(x\left(x+1\right)\left(x+7\right)\left(x+8\right)=y^2\)
b)\(y\left(y+1\right)\left(y+2\right)\left(y+3\right)=x^2\)
Tìm nghiệm của H(x)
\(H\left(x\right)=-2x^3+2x\)
ta có:H(x)=\(-2x^3+2x=0\)
=>\(-2x^3=0\)hoặc\(2x=0\)
=>\(x=0\)
Cho hpt:\(\left\{{}\begin{matrix}\left(m-3\right)x+y=2\\mx+2y=8\end{matrix}\right.\)
Tìm m để nghiệm của hpt (x,y) là các số nguyên
Giúp cái: Tìm nghiệm nguyên của phương trình \(\left(x+1\right)\left(x+2\right)\left(x+8\right)\left(x+9\right)=y^2\)
Ta có
\(1\left(x+1\right)\left(x+2\right)\left(x+8\right)\left(x+9\right)=y^2\)
\(\Leftrightarrow1\left(x^2+10x+9\right)\left(x^2+10x+16\right)=y^2\)
Đặt x2 + 10x + 16 = a thì pt thành
a(a + 7) = y2
<=> 4a2 + 28a = 4y2
<=> (4a2 + 28a + 49) - 4y2 = 49
<=> (2a + 7)2 - 4y2 = 49
<=> (2a + 7 - 2y)(2a + 7 + 2y) = 49
<=> (2a + 7 - 2y, 2a + 7 + 2y) = (1, 49; 49, 1; 7, 7; - 1,- 49; - 49, - 1; - 7, - 7)
Thế vào rồi giải sẽ tìm được x,y
Đặt x2 + 4x + 9 = a mới đúng nhé. Nãy quên đổi lại
Tìm tất cả các nghiệm nguyên của phương trình:\(\left(x+1\right)\)\(\left(x+3\right)\)\(\left(x+8\right)\)\(\left(x-9\right)\)\(=y^3\)
tập nghiệm của bất pt
a) \(\left|4x-8\right|\le8\)
b) \(\left|x-5\right|\le4\). (số nghiệm nguyên|)
c) \(\left|2x+1\right|< 3x\) ( giá trị nguyên x thỏa mãn [-2017;2017]
d) \(\left|x+1\right|+\left|x\right|< 3\)
e) \(\left|2-x\right|+3x-1\le6\)
a, \(\left|4x-8\right|\le8\)
\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)
\(\Leftrightarrow16x^2-64x+64\le64\)
\(\Leftrightarrow16x^2-64x\le0\)
\(\Leftrightarrow16x\left(x-4\right)\le0\)
\(\Leftrightarrow0\le x\le4\)
b, \(\left|x-5\right|\le4\)
\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)
\(\Leftrightarrow x^2-10x+25\le16\)
\(\Leftrightarrow x^2-10x+9\le0\)
\(\Leftrightarrow1\le x\le9\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)
c, \(\left|2x+1\right|< 3x\)
TH1: \(x\ge-\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow2x+1< 3x\)
\(\Leftrightarrow x>1\)
\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
TH2: \(x< -\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow-2x-1< 3x\)
\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)
Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
d, \(\left|x+1\right|+\left|x\right|< 3\)
\(\Leftrightarrow x+1+x+2\left|x^2+x\right|< 9\)
\(\Leftrightarrow\left|x^2+x\right|< 4-x\)
Xét hai trường hợp để phá dấu giá trị tuyệt đối
e, Tương tự câu d