CHo ba số a, b, c thỏa mãn: \(a^2+b^2+c^2=2\). Tìm max và min của P=a+b+c-abc
Cho 3 số a,b,c là số thực ko âm thỏa mãn \(a^2+b^2+c^2+abc=4\)
tìm Min và Max của P=a+b+c
a2+b2+c2=4−abc≤4
Smax=4 khi 1 trong 3 số bằng 0
4=abc+a2+b2+c2≥abc+33√(abc)2
Đặt 3√abc=x>0⇒x3+3x2−4≤0
⇔(x−1)(x+2)2≤0⇒x≤1
⇒abc≤1⇒S=4−abc≥3
Dấu "=" xảy ra khi a=b=c=1
Cho a;b;c là các số thực không âm thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm min và max của \(A=a^3+b^3+c^3\)
\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)
Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(A_{min}=3\) khi \(a=b=c=1\)
Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)
\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)
Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)
\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)
\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị
cho số thực a;b;c thỏa mãn \(a^2+b^2+c^2=1\)
tìm min max của \(P=ab+bc+ca\)
Chuyên gia sao lại đi hỏi ( nghĩ chuyên gia phải cái gì cũng biết mà ??? )
Ta có: \(\left(a+b+c\right)^2\ge0\)
<=>\(a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
<=>\(1+2\left(ab+bc+ca\right)\ge0\)
<=>\(ab+bc+ca\ge\dfrac{-1}{2}\)
hay P\(\ge\dfrac{-1}{2}\)
cho các số thực,a,b,c thay đổi thỏa mãn
x+a+b+c=7 và x^2+a^2+b^2+c^2=13.
tìm min, max của x
Ta có: \(x+a+b+c=7\Rightarrow a+b+c=7-x\)
\(\Rightarrow\left(a+b+c\right)^2=\left(7-x\right)^2\). Lại có BĐT
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) (theo C-S hay Am-Gm đều dc...)
\(\Rightarrow\left(7-x\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow x^2-14x+49\le3\left(13-x^2\right)\left(a^2+b^2+c^2=13-x^2\right)\)
\(\Rightarrow4x^2-14x+10\le0\Rightarrow\left(x-1\right)\left(x-2,5\right)\le0\)
\(\Rightarrow x_{min}\ge1;x_{max}\le2,5\)
Câu 1:cho a,b thuộc [1;2]. Tìm Min,Max của S=(a+b)(1/a+1/b).
Câu 2:cho a,b>=0,c>=1 thỏa mãn a+b+c=2.tìm max P=(6-a^2-b^2-c^2)(2-a^b^c).
Câu 3:Cho a,b,c thuộc [1;3] và a+b+c=6. Tìm Min,Max của A=a^3+b^3+c^3.
Làm gấp giúp mik vs ạ
Câu 1:cho a,b thuộc [1;2]. Tìm Min,Max của S=(a+b)(1/a+1/b).
Câu 2:cho a,b>=0,c>=1 thỏa mãn a+b+c=2.tìm max P=(6-a^2-b^2-c^2)(2-a^b^c).
Câu 3:Cho a,b,c thuộc [1;3] và a+b+c=6. Tìm Min,Max của A=a^3+b^3+c^3.
Làm gấp giúp mik vs ạ
Cho các số thực không âm a;b;c thỏa mãn \(a^2+b^2+c^2=3\)
Tìm max và min của \(P=\frac{a}{2+b}+\frac{b}{2+c}+\frac{c}{2+a}\)
1 . Cho 2 số thực a , b thỏa mãn a + b = 20 . Tìm min \(T=a^3+b^3\)
2 . a , Tìm các số a , b , c thỏa mãn : \(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)
b , Cho a + 2b = 1 . Tìm max của ab .
1,\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=\)
\(=10\left(a^2-2ab+b^2\right)+10\left(a^2+b^2\right)\)
\(\ge10\left(a-b\right)^2+5.\left(a+b\right)^2\ge0+5.20^2=2000\)
2,a,\(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)
\(\Leftrightarrow a-2\sqrt{a}+b-2\sqrt{b-1}+c-2\sqrt{c-2}=0\)
\(\Leftrightarrow a-2\sqrt{a}+1+b-1-2\sqrt{b-1}+1+c-2+2\sqrt{c-2}+1=0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-1\right)^2+\left(\sqrt{c-2}-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
b,sai đề
Xét \(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow10\ge\sqrt{ab}\Leftrightarrow100\ge ab\)
\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=20\left[a^2+2ab+b^2-3ab\right]=20\left(20\right)^2-6ab\)
\(T\ge20.20^2-6.100=7400\)
b. \(1=\left(a+2b\right)^2\ge4.a.2b=8ab\)
\(\Rightarrow ab\le\frac{1}{8}\)
Dấu = xảy ra khi \(a=\frac{1}{2}\);\(b=\frac{1}{8}\)
Cho a;b;c>=0 thỏa mãn : \(3\left(a^2+b^2+c^2\right)+ab+bc+ac=12\)
Tìm min max của \(P=\dfrac{a^2+b^2+c^2}{a+b+c}+ab+bc+ac\)