a2+b2+c2=4−abc≤4
Smax=4 khi 1 trong 3 số bằng 0
4=abc+a2+b2+c2≥abc+33√(abc)2
Đặt 3√abc=x>0⇒x3+3x2−4≤0
⇔(x−1)(x+2)2≤0⇒x≤1
⇒abc≤1⇒S=4−abc≥3
Dấu "=" xảy ra khi a=b=c=1
a2+b2+c2=4−abc≤4
Smax=4 khi 1 trong 3 số bằng 0
4=abc+a2+b2+c2≥abc+33√(abc)2
Đặt 3√abc=x>0⇒x3+3x2−4≤0
⇔(x−1)(x+2)2≤0⇒x≤1
⇒abc≤1⇒S=4−abc≥3
Dấu "=" xảy ra khi a=b=c=1
a,b,c là các số thực không âm thỏa mãn a+b+c=2. Tìm max và min của \(P=\sqrt{a+b^3c^3}+\sqrt{b+c^3a^3}+\sqrt{c+a^3b^3}\)
Bài 1:
Cho a, b, c là các số thực không âm thỏa mãn : a + b + c = 3
Tìm Min và Max của P = a2b + b2c + c2a
`a,b,c` là các số thực không âm thỏa mãn `a^3 +b^3 +c^3 =3`. Tìm min và max \(P=\dfrac{a}{7-3bc}+\dfrac{b}{7-3ca}+\dfrac{c}{7-3ab}\)
cho số thực không âm thỏa mãn a+b+c=1
tìm Min và Max của \(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\)
cho các số thực,a,b,c thay đổi thỏa mãn
x+a+b+c=7 và x^2+a^2+b^2+c^2=13.
tìm min, max của x
Cho a,c,b là các số dương thỏa mãn a+b+c=3
Tìm MIn , Max của M = \(\sqrt{a^2+a+4}+\sqrt{b^2+b+4}+\sqrt{c^2+c+4}\)
1 . Cho 2 số thực a , b thỏa mãn a + b = 20 . Tìm min \(T=a^3+b^3\)
2 . a , Tìm các số a , b , c thỏa mãn : \(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)
b , Cho a + 2b = 1 . Tìm max của ab .
Cho a, b, c là các số thực thoả mãn a^2+b^2+c^2=1.
Tìm min và max của ab+bc+ca