Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

`a,b,c` là các số thực không âm thỏa mãn `a^3 +b^3 +c^3 =3`. Tìm min và max \(P=\dfrac{a}{7-3bc}+\dfrac{b}{7-3ca}+\dfrac{c}{7-3ab}\)

Nguyễn Việt Lâm
14 tháng 1 2024 lúc 13:07

Min:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc\ge a^3+b^3+c^3\)

\(\Rightarrow a+b+c\ge\sqrt[3]{a^3+b^3+c^3}=\sqrt[3]{3}\)

\(\Rightarrow P=\dfrac{a}{7-3bc}+\dfrac{b}{7-3ca}+\dfrac{c}{7-3ab}\ge\dfrac{a}{7}+\dfrac{b}{7}+\dfrac{c}{7}=\dfrac{a+b+c}{7}\ge\dfrac{\sqrt[3]{3}}{7}\)

Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(0;0;\sqrt[3]{3}\right)\) và các hoán vị

Max:

\(\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3a+3b+3c\)

\(\Rightarrow a+b+c\le\dfrac{a^3+b^3+c^3+6}{3}=3\)

 

Khi đó:

\(7P=\dfrac{7a}{7-3bc}+\dfrac{7b}{7-3ca}+\dfrac{7c}{7-3ab}=\dfrac{a\left(7-3bc\right)+3abc}{7-3bc}+\dfrac{b\left(7-3ca\right)+3abc}{7-3ca}+\dfrac{c\left(7-3ab\right)+3abc}{7-3ab}\)

\(=a+b+c+\dfrac{3abc}{7-3bc}+\dfrac{3abc}{7-3ca}+\dfrac{3abc}{7-3ab}\)

Ta có:

\(7-3ab\ge\dfrac{7}{9}\left(a+b+c\right)^2-3ab=\dfrac{1}{9}\left[\dfrac{13}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)+7c^2+14bc+14ca\right]\)

Do \(\dfrac{13}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a^2+b^2\right)\ge ab\)

\(\Rightarrow7-3ab\ge\dfrac{1}{9}\left(ab+7c^2+14bc+14ca\right)\)

\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{27abc}{ab+7c\left(c+2a+2b\right)}\le\dfrac{27abc}{36^2}\left(\dfrac{1^2}{ab}+\dfrac{35^2}{7c\left(c+2a+2b\right)}\right)\)

\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{c}{48}+\dfrac{175}{48}.\dfrac{ab}{c+2a+2b}=\dfrac{c}{48}+\dfrac{175}{48}.\dfrac{ab}{\left(a+b+c\right)+\left(a+b\right)}\)

\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{c}{48}+\dfrac{175}{48}.\dfrac{ab}{5^2}\left(\dfrac{3^2}{a+b+c}+\dfrac{2^2}{a+b}\right)\)

\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{c}{48}+\dfrac{21}{16}.\dfrac{ab}{a+b+c}+\dfrac{7}{12}.\dfrac{ab}{a+b}\le\dfrac{c}{48}+\dfrac{21}{16}.\dfrac{ab}{a+b+c}+\dfrac{7}{48}.\dfrac{\left(a+b\right)^2}{a+b}\)

\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{7a+7b+c}{48}+\dfrac{21}{16}.\dfrac{ab}{a+b+c}\)

Tương tự:

\(\dfrac{3abc}{7-3bc}\le\dfrac{a+7b+7c}{48}+\dfrac{21}{16}.\dfrac{bc}{a+b+c}\)

\(\dfrac{3abc}{7-3ca}\le\dfrac{7a+b+7c}{48}+\dfrac{21}{16}.\dfrac{ca}{a+b+c}\)

\(\Rightarrow7P\le\dfrac{21}{16}\left(a+b+c\right)+\dfrac{21}{16}\left(\dfrac{ab+bc+ca}{a+b+c}\right)\le\dfrac{21}{16}\left(a+b+c\right)+\dfrac{21}{48}.\dfrac{\left(a+b+c\right)^2}{a+b+c}\)

\(\Rightarrow7P\le\dfrac{7}{4}\left(a+b+c\right)\)

\(\Rightarrow P\le\dfrac{a+b+c}{4}\le\dfrac{3}{4}\)

Vậy \(P_{max}=\dfrac{3}{4}\) khi \(a=b=c=1\)

 


Các câu hỏi tương tự
Lizy
Xem chi tiết
Lizy
Xem chi tiết
CTVHoidap
Xem chi tiết
pro
Xem chi tiết
Lee Yeong Ji
Xem chi tiết
Lizy
Xem chi tiết
Linh Vương Nguyễn Diệu
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Rhider
Xem chi tiết