Cho a;b;c là các số thực không âm thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm min và max của \(A=a^3+b^3+c^3\)
cho a b c là các số thực thỏa mãn a,b ≥0 0≤ c ≤ 1 và a^2 +b^2 +c^2 =3
Tìm min max P= ab + bc +ca +3(a+b+c)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho a,b,c không âm thỏa mãn a+b+c=1. Tìm Min và Max của biểu thức:
\(T=\dfrac{a}{1+b+c}+\dfrac{b}{1+c+a}+\dfrac{c}{1+a+b}\)
cho 3 số a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=2\) Tìm Max P=abc
cho ba số thực không âm a,b,c thỏa mãn ab+ac+bc=1 .Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a^2+b^2+c^2+3}{a+b+c-abc}\)
cho a,b,c là các số thực không âm thỏa mãn a+b+c=3
Tìm Min và Max của P = a2+b2+c2+3\(\sqrt{abc}\)
Cho \(a,b,c\in R^+\) thỏa mãn \(a^3+b^3+c^3-3abc=1\)
Tìm min \(P=a^2+b^2+c^2\)
1. Cho \(x,y,z>1\) và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\) . Cmr \(\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)
2. Cho a,b,c là các số thực dương thỏa mãn \(a+b+c=6\) . Tính Min của \(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\)
3. Cho a,b,c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\) . Tính min của \(B=a+b+c+\dfrac{1}{abc}\)
4. Cho a,b,c là các số thực dương thỏa mãn \(a+b+c+ab+bc+ac=6\) . Tính Max của \(C=abc\)
5. Cho a,b,c là các số thực dương thỏa mãn \(a+b+c=2\) . Tính Max của \(D=abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Giúp mk nhanh nhé mn ơi