giải pt
\(\sqrt{5-3x}+\sqrt{x+1}=\sqrt{3x^2-4x+4}\)
nhanh nha cần gấp
giải pt:
a) \(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\)
b) \(3x+\sqrt{4x^2-8x+4}=1\)
c) \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
giúp mk vs ạ mk cần gấp
a,ĐKXĐ:\(x\ge2\)
\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)
b,ĐKXĐ:\(x\in R\)
\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
c, ĐKXĐ:\(x\ge0\)
\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)
giải pt
\(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
\(x^4+\sqrt{x^2+3}=3\)
\(\sqrt{x}+\sqrt[4]{20-x}=4\)
\(\sqrt{2x+1}+3\sqrt{4x^2-2x+1}=3+\sqrt{8x^3+1}\)
mn giải giúp e với nhé, e đang cần gấp. Thanks trc nha
Giải PT: \(\sqrt{5-3x}+\sqrt{x+1}=\sqrt{3x^2-4x+4}\)
giải giúp mình các pt sau đây nha
1. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)
2. \(\sqrt{x^2+x+1}=2x+\sqrt{x^2-x+1}\)
3. \(\sqrt[3]{x+1}+\sqrt[3]{x+3}=\sqrt[3]{x+2}\)
4. \(4x^2-x+4=3x\sqrt{x+\dfrac{1}{x}}\)
5. \(\sqrt[4]{x^2+x+1}+\sqrt[4]{x^2-x+1}=2\sqrt[4]{x}\)
6. \(4x^2-3x-4=\sqrt[3]{x^4-x^2}\)
giải nhanh giúp mình nha
thanks trước
a,dk x>0
\(\Leftrightarrow\)\(\dfrac{\left(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}\right)\left(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}\right)}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}=3x\)
\(\Leftrightarrow x\left(\dfrac{x+2}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}-3\right)=0\)
\(\Rightarrow\dfrac{x+2}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}=3\)
\(\Rightarrow\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\dfrac{x+2}{3}\)
kh vs dé bài ta có hệ \(\left\{{}\begin{matrix}\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\\\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\dfrac{x+2}{3}\end{matrix}\right.\)
cộng vs nhau ta có
\(2\sqrt{2x^2+x+1}=3x+\dfrac{x+2}{2}\)
\(\Leftrightarrow3\sqrt{2x^2+x+1}=5x+1\)
giải ra ta có x=1(tm) x=-8/7 (l)
b, dk tu xd nhé
\(\Leftrightarrow\dfrac{\left(\sqrt{x^2+x+1}-\sqrt{x^2-x+1}\right)\left(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\right)}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}}-2x=0\)
\(\Leftrightarrow2x\left(\dfrac{1}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=1\left(l\right)\end{matrix}\right.\)
ns \(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}>1\)
\(\Rightarrow x=0\left(tm\right)\)
giải pt:
a. \(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)
b. \(\sqrt{3x-5}+\sqrt{7-3x}=5x^2-20x+22\)
c. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
Bài 1: Giải phương trình( đặt ẩn phụ)
a) \(\sqrt{4x^2-4x-11}=8x^2-8x-28\)
b)\(\sqrt{3x^2+9x+8}=x^2+3x-2\)
c) (x+5).(2-x) = \(\sqrt{x^2+3x}\)
d) \(\sqrt{x^2-4x+5}=x^2-4x+12\)
(mình đag cần gấp)
1/ ĐKXĐ: $4x^2-4x-11\geq 0$
PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$
$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)
$\Leftrightarrow 2a^2-a-6=0$
$\Leftrightarrow (a-2)(2a+3)=0$
Vì $a\geq 0$ nên $a=2$
$\Leftrightarrow \sqrt{4x^2-4x-11}=2$
$\Leftrightarrow 4x^2-4x-11=4$
$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$
$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)
2/ ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$
$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)
$\Leftrightarrow a^2-3a-14=0$
$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)
$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$
3. ĐKXĐ: $x^2+3x\geq 0$
PT $\Leftrightarrow 10-(x^2+3x)=\sqrt{x^2+3x}$
$\Leftrightarrow 10-a^2=a$ (đặt $\sqrt{x^2+3x}=a, a\geq 0$)
$\Leftrightarrow a^2+a-10=0$
$\Rightarrow a=\frac{-1+\sqrt{41}}{2}$
$\Leftrightarrow x^2+3x=a^2=\frac{21-\sqrt{41}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{51-2\sqrt{41}})$ (đều tm)
Giải các pt sau:
\(\sqrt{5-x^6}=\sqrt[2]{3x^4-2}\)
\(\sqrt{3-x}+\sqrt{x-1}=2+\left(x-y\right)^2\)
\(\sqrt{2x-1}+x^2-3x+1=0\)
\(\sqrt{x}+\sqrt{x+9}=\sqrt{x+1}+\sqrt{x+4}\)
mình đang cần gấp, bạn nào giải nhanh trong ngày hôm nay mk tích cho nhé