có bao nhiêu giá trị nguyên dương của m để bpt \(x^2-4x+m\le0\) có nghiệm thuộc (0,6)
1. Tìm m để hệ bpt sau có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x^2+2x+m+1\le0\\x^2-4x-6\left(m+1\right)< 0\end{matrix}\right.\)
2. Tìm các giá trị của m để biểu thức sau luôn dương
\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)+1-4m^2}{-4x^2+5x-2}\)
3. Giải bpt sau
\(\dfrac{\left|x^2-x\right|-2}{x^2-x-1}\ge0\)
2: \(-4x^2+5x-2\)
\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)
\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)
\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)
Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)
Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)
=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)
\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)
\(=16m^2+32m+16+4\left(1-4m^2\right)\)
\(=32m+20\)
Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)
=>32m+20<0
=>32m<-20
=>\(m< -\dfrac{5}{8}\)
Có bao nhiêu giá trị nguyên dương của m < 20 để bất phương trình log 2 x 2 + 2 3 x 2 + 4 x + m ≤ x 2 + 4 x + m - 5 có nghiệm ∀ x ∈ R .
A. 15.
B.12
C.14
D.13
Có bao nhiêu giá trị nguyên dương của m < 20 để bất phương trình log 2 x 2 + 2 3 x 2 + 4 x + m ≤ x 2 + 4 x + m - 5 có nghiệm ∀ x ∈ ℝ .
A. 15
B. 12
C. 14
D. 13
có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để bpt \(x^3-x^2+\left(m-2\right)x+m\ge\)0 có nghiệm đúng với mọi x>0
A.7 B.8 C.9 D.10
giúp mình với mình tính mãi k ra
\(\Leftrightarrow\) Với mọi \(x>0\) ta luôn có:
\(x^3-x^2-2x+m\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x\right)+m\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+m\right)\ge0\)
\(\Leftrightarrow x^2-2x+m\ge0\) (do \(x+1>0\) ; \(\forall x>0\))
\(\Leftrightarrow m\ge-x^2+2x\)
\(\Leftrightarrow m\ge\max\limits_{x>0}\left(-x^2+2x\right)=1\)
\(\Rightarrow m=\left\{1;2;3;4;...;10\right\}\)
ĐKXĐ: \(x\ge0\)
- Với \(x=0\) ko phải là nghiệm
- Với \(x>0\) chia 2 vế cho \(x\) ta được:
\(\dfrac{x^2+4}{x}+2-m=4\sqrt{\dfrac{x^2+4}{x}}\)
Đặt \(\sqrt{\dfrac{x^2+4}{x}}=t\ge2\)
\(\Rightarrow t^2-4t+2=m\)
Xét hàm \(f\left(t\right)=t^2-4t+2\) với \(t\ge2\)
\(\Rightarrow f\left(t\right)\ge f\left(2\right)=-2\Rightarrow m\ge-2\)
Có \(2018-\left(-2\right)+1=2021\) giá trị nguyên của m
cho bpt: \(x^2+4x+3+m\le0\)
Với giá trị nào của m thi bpt có nghiệm là đoạn thang73 có độ dài bằng 2.
Mn giup to vs. Help me
tìm tất cả các giá trị của m để bpt \(x^2-x+m\le0\) vô nghiệm
\(x^2-x+m\le0\)
\(\Leftrightarrow m\le f\left(x\right)=-x^2+x\)
Bảng biến thiên:
Yêu cầu bài toán thỏa mãn khi \(m>maxf\left(x\right)=f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}\)
tìm tất cả các giá trị của tham số m để bpt \(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m\) có nghiệm đúng với mọi x thuộc R
Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)
\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)
\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)
\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)
Yêu cầu bài toán thỏa mãn khi:
\(m\le minf\left(t\right)=-2\)
Có tất cả bao nhiêu giá trị nguyên dương của m để bất phương trình m .9 x − 2 m + 1 6 x + m .4 x ≤ 0 nghiệm đúng với mọi x ∈ 0 ; 1 ?
A. 5
B. 2
C. 4
D. 6
Đáp án D.
Ta có:
P T ⇔ m 9 4 x − 2 m + 1 6 4 x + m ≤ 0 ⇔ m 3 2 2 x − 2 m + 1 3 2 x + m ≤ 0
Đặt t = 3 2 x ; do x ∈ 0 ; 1 ⇒ t ∈ 1 ; 3 2 . Khi đó PT trở thành: m t 2 − 2 m + 1 t + m ≤ 0 ⇔ m t 2 − 2 t + 1 ≤ t
Rõ ràng t = 1 là nghiệm của BPT đã cho.
Với t ∈ 1 ; 3 2 ⇒ m ≤ t t − 1 2 = f t , xét f x với t ∈ 1 ; 3 2 ta có:
f ' t = t − 1 − 2 t t − 1 3 = − t − 1 t − 1 2 < 0 ∀ t ∈ 1 ; 3 2
do đó f t nghịch biến trên 1 ; 2 3 .
Do đó BPT nghiệm đúng vơi ∀ t ∈ 1 ; 3 2 ⇔ m ≤ M i n 1 ; 3 2 f t = f 3 2 = 6
Vậy có 6 giá trị nguyên dương của m thỏa mãn.