Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhi nè

có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để bpt \(x^3-x^2+\left(m-2\right)x+m\ge\)0  có nghiệm đúng với mọi x>0

A.7          B.8        C.9        D.10

giúp mình với mình tính mãi k rabucminh

Nguyễn Việt Lâm
11 tháng 7 2021 lúc 16:52

\(\Leftrightarrow\) Với mọi \(x>0\) ta luôn có:

\(x^3-x^2-2x+m\left(x+1\right)\ge0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x\right)+m\left(x+1\right)\ge0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+m\right)\ge0\)

\(\Leftrightarrow x^2-2x+m\ge0\) (do \(x+1>0\) ; \(\forall x>0\))

\(\Leftrightarrow m\ge-x^2+2x\)

\(\Leftrightarrow m\ge\max\limits_{x>0}\left(-x^2+2x\right)=1\)

\(\Rightarrow m=\left\{1;2;3;4;...;10\right\}\)

Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 23:26

Chọn D