Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Thu Hiền

Có bao nhiêu giá trị nguyên của tham số m nhỏ hơn 2021 để phương trình \(4x^2+\left(3-2m\right)x+1+2\sqrt{4x^3+x}=0\) có nghiệm

Nguyễn Việt Lâm
3 tháng 1 2022 lúc 15:44

ĐKXĐ: \(x\ge0\)

- Với \(x=0\) không phải nghiệm

- Với \(x>0\) , chia 2 vế của pt cho \(x\) ta được:

\(\dfrac{4x^2+1}{x}+2\sqrt{\dfrac{4x^2+1}{x}}+3-2m=0\)

Đặt \(t=\sqrt{\dfrac{4x^2+1}{x}}\ge\sqrt{\dfrac{2\sqrt{4x^2}}{x}}=2\)

Pt trở thành: \(t^2+2t+3-2m=0\)

\(\Leftrightarrow t^2+2t+3=2m\) (1)

Pt đã cho có nghiệm khi và chỉ khi (1) có nghiệm \(t\ge2\)

Xét hàm \(f\left(t\right)=t^2+2t+3\) khi \(t\ge2\)

Do \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=-1< 2\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge2\)

\(\Rightarrow f\left(t\right)\ge f\left(2\right)=11\)

\(\Rightarrow\) Pt có nghiệm khi \(2m\ge11\Rightarrow m\ge\dfrac{11}{2}\)


Các câu hỏi tương tự
Cao Tường Vi
Xem chi tiết
nguyen hong thai
Xem chi tiết
Toanhockho
Xem chi tiết
talasuperman
Xem chi tiết
PHÙNG MINH KHOA
Xem chi tiết
Thái Thanh Phong
Xem chi tiết
đấng ys
Xem chi tiết
MiMi -chan
Xem chi tiết
Linh Nguyen
Xem chi tiết