\(x^2-x+m\le0\)
\(\Leftrightarrow m\le f\left(x\right)=-x^2+x\)
Bảng biến thiên:
Yêu cầu bài toán thỏa mãn khi \(m>maxf\left(x\right)=f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}\)
\(x^2-x+m\le0\)
\(\Leftrightarrow m\le f\left(x\right)=-x^2+x\)
Bảng biến thiên:
Yêu cầu bài toán thỏa mãn khi \(m>maxf\left(x\right)=f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}\)
tìm tất cả giá trị của m để pt x^4-2(m-1)x^2+2m-1=0 vô nghiệm
hệ bpt\(\left\{{}\begin{matrix}x^2-5x+4\le0\\x^2-\left(m^2+3\right)+2\left(m^2+1\right)\le0\end{matrix}\right.\) có tập nghiệm biểu diễn trên trục số có độ dài bằng 1 , với giá trị của m là
tập tất cả các giá trị của tham số m để pt \(x^2+\sqrt{1-x^2}=m\) có nghiệm là [a,b]
tính S= a+b
\(\left\{{}\begin{matrix}x^2-3x-4\le0\\x^3-3\left|x\right|x-m^2+6m\ge0\end{matrix}\right.\) để hệ có nghiệm, giá trị thích hợp của tham số m là
câu 1 cho bpt \(m\left(x-m\right)\ge x-1\) với giá trị nào sau đây của m thì tập nghiệm cuat bpt là S= \(\left(-\infty,m+1\right)\)
với giá trị nào của m thì hệ bpt sau có nghiệm\(\left\{{}\begin{matrix}\dfrac{2x-1}{x}< \dfrac{x-2}{x-1}\\3x^2-4x+m< 0\end{matrix}\right.\)
cho biểu thức f(x,y)= \(x^2+2y^2-2xy+2mx+2y+25\) ( m là tham số). Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để f(x,y) \(\ge\) 0 với x, y thuộc R. tính tổng tất cả các phần tử của S
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\sqrt{x-m}-\sqrt{6-2x}\)
có tập xác định là 1 đoạn trên trục số là
Cho A= (0;2m) ; B={x thuộc R | x3 - 2(m+2)x + 2m -4 =0} (m>0)
Tìm tất cả giá trị m để A giao B khác rỗng