Lý thuyết cơ bản:
BPT: \(f\left(x\right)\le f\left(m\right)\) có nghiệm \(x\in\left(a;b\right)\) khi và chỉ khi \(f\left(m\right)\ge\min\limits_{\left(a;b\right)}f\left(x\right)\)
BPT: \(f\left(x\right)\le f\left(m\right)\) nghiệm đúng với mọi \(x\in\left(a;b\right)\) khi và chỉ khi \(f\left(m\right)\ge\max\limits_{\left(a;b\right)}f\left(x\right)\)
Nói tóm lại: có nghiệm thì so sánh với min, nghiệm đúng với mọi x thì so sánh với max
Trong trường hợp \(f\left(x\right)\ge f\left(m\right)\) thì làm ngược lại.
Ta có: \(x^2-3x-4\le0\Leftrightarrow-1\le x\le4\)
Xét \(x^3-3\left|x\right|x\ge m^2-6m\) trên \(\left[-1;4\right]\)
BPT có nghiệm khi \(f\left(m\right)=m^2-6m\le\max\limits_{\left[-1;4\right]}f\left(x\right)\) với \(f\left(x\right)=x^3-3\left|x\right|x\)
- Với \(-1\le x\le0\Rightarrow f\left(x\right)=x^3+3x^2=x^3+3x^2-2+2\)
\(=\left(x+1\right)\left[\left(x+1\right)^2-3\right]+2\le2\)
- Với \(0\le x\le4\Rightarrow f\left(x\right)=x^3-3x^2=x^3-3x^2-16+16\)
\(=\left(x-4\right)\left(x^2+x+4\right)+16\le16\)
So sánh 2 giá trị 2 và 16 ta suy ra \(\max\limits_{\left[-1;4\right]}\left(x^3-3\left|x\right|x\right)=f\left(4\right)=16\)
\(\Rightarrow m^2-6m\le16\Leftrightarrow m^2-6m-16\le0\)
\(\Leftrightarrow-2\le m\le8\)