cho phương trình: \(2x^2+\left(2m-1\right)x+m-1=0\)
a) Tìm m để phương trình có 2 nghiệm phân biệt
b) Tìm m để \(3x_1-4x_2=11\)
Cho phương trình :
\(x^2-2\left(m-1\right)x+m^2-3m=0\)
a) Xác định m để phương trình có 2 nghiệm phân biệt
b) Xác định m để phương trình có đúng 1 nghiệm âm
c) Xác định m để phương trình có 1 nghiệm bằng 0. Tìm nghiệm còn lại
d) Tìm hệ thức liên hệ giữa 2 nghiệm x1, x2 của phương trình không phụ thuộc và m
e) Xác định m để phương trình có 2 nghiệm thỏa mãn \(x1^2+x2^2=8\)
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
cho phương trình \(\left(m+1\right)x^2-2\left(m+1\right)x+m-3=0\)
a, giải phương trình khi m = 3
b, tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\)thoả mãn \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)
a, Thay m vào pt ta được :
(3+1).x2-2(3+1).x+3-3=0
\(\Leftrightarrow\)4x2-8x=0
\(\Leftrightarrow4x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy m=3 phương trình có 2 nghiệm là 0 và 2
b, Theo Vi et ta có :
\(\left\{{}\begin{matrix}x_1.x_2=\dfrac{m-3}{m+1}\\x_1+x_2=\dfrac{2\left(m+1\right)}{m+1}\end{matrix}\right.\left(vớim\ne-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1.x_2=\dfrac{m-3}{m+1}\\x_1+x_2=2\end{matrix}\right.\) (1)
Ta có : (4x1+1)(4x2+1)=18
\(\Leftrightarrow16x_1.x_2+4x_1+4x_2+1=18\)
\(\Leftrightarrow16.x_1.x_2+4\left(x_1+x_2\right)=17\) (2)
Thay (1) vào (2) ta được :
16.\(\dfrac{m-3}{m+1}+4.2=17\)
\(\Leftrightarrow\dfrac{16m-48}{m+1}=9\)
\(\Leftrightarrow9\left(m+1\right)=16m-48\)
\(\Leftrightarrow9m+9=16m-48\)
\(\Leftrightarrow7m=57\)
\(\Leftrightarrow m=\dfrac{57}{7}\) (thỏa mãn m\(\ne-1\))
Vậy ..
Cho phương trình x2 - (2m+1) x+m = 0 (m là tham số)
a) Tìm m để phương trình có 2 nghiệm riêng biệt
b) Tìm m để phương trình có 1 nghiệm
Ta có:\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.m=4m^2+4m+1-4m=4m^2+1>0\)
\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt
cho phương trình \(2x^2+\left(2m-1\right)x+m-1=0\) với m tham số
a, giải phương trình với m = 2
b, tìm m để phương trình có hai ngiệm \(x_1;x_2\) thoả mãn \(4x_1^2+2x_1x_2+4x_2^1=1\)
\(2x^2+\left(2m-1\right)x+m-1=0\)
Thay m=2 vào phương trình ta có
\(2x^2+\left(4-1\right)x+2-1=0\)
\(\Leftrightarrow2x^2+3x+1=0\)
\(\Delta=3^2-4.2.1\)
\(=9-8\)
\(=1>0\Rightarrow\sqrt{\Delta}=1\)
\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-3-1}{4}=-1\) \(x_2=\dfrac{-3+1}{4}=\dfrac{-1}{2}\)
Vậy phương trình có 2 nghiệm là \(x_1=-1;x_2=\dfrac{-1}{2}\)khi m=2
b,\(4x_1^2+2x_1x_2+4x_2^2=1\)
\(\Leftrightarrow4\left(x_1^2+x_2^2\right)+2x_1x_2=1\)
\(\Leftrightarrow4\left(x_1+x_2\right)=1\)
\(\Leftrightarrow4.\left(2m-1\right)^2=1\)
\(\Leftrightarrow2m-1=\dfrac{1}{2}\)
\(\Leftrightarrow2m=\dfrac{3}{2}\)
\(\Leftrightarrow m=\dfrac{3}{4}\)
-Chúc bạn học tốt-
cho phương trình x2-2(m+1)x+4m2-2m-2=0 ,m là tham số. Tìm m để phương trình
a. có 2 nghiệm phân biệt
b. có 2 nghiệm phân biệt dương
a, Phương trình có hai nghiệm phân biệt khi \(\Delta'=\left(m+1\right)^2-\left(4m^2-2m-2\right)=-3m^2+4m+3>0\)
\(\Leftrightarrow\dfrac{2-\sqrt{13}}{3}< m< \dfrac{2+\sqrt{13}}{3}\)
b, Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'>0\\2\left(m+1\right)>0\\4m^2-2m-2>0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Cho phương trình ẩn \(x\): \(x^2-2\left(m-1\right)x-2=0\) (\(m\) là tham số). Tìm \(m\) để phương trình có 2 nghiệm phân biệt \(x_1\), \(x_2\) sao cho biểu thức: \(A=x_1^2+4x_2^2\) có giá trị nhỏ nhất.
\(\Delta=\left[-2\left(m-1\right)\right]^2-4.\left(-2\right)\)
\(=4m^2-8m+8+8\)
\(=4m^2-8m+16\)
\(=3m^2+\left(m-4\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>4\end{matrix}\right.\) \(\rightarrow m>4\)
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\left(1\right)\\x_1x_2=-2\end{matrix}\right.\)
\(A=x_1^2+4x_2^2\)
\(A=x_1^2+\left(2x_2\right)^2\)
\(\Rightarrow Min_A=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=0\\x_2=0\end{matrix}\right.\)
Thế vào (1) ta được: \(0=2m-2\)
\(\Leftrightarrow m=1\)
a Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)
có hai nghiệm phân biệt trong đó nghiệm này
gấp đôi nghiệm kia
b Tìm m để phương trình \(x^2-2mx+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+2x_2\) =1
c Tìm m để phương trình \(x^2-2mx+\left(m-1\right)^3=0\)
có hai nghiệm trong đó nghiệm này là bình
phương của nghiệm kia .
d Tìm m để phương trình \(2x^2-\left(m+1\right)x+m+3=0\) có hai nghiệm sao cho hiệu hai nghiệm bằng 1.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
Cho phương trình \(x^2-2x+m+2=0\). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn:
\(\sqrt{\left(x_1^2+mx_2-4x_1+4\right)\left(x_2^2+mx_1-4x_2+4\right)}=\left|x_2-x_1\right|\sqrt{x_1x_2}\)
a) Tìm m để phương trình\(\left(m+3\right)x^2-\left(m^2+5m\right)x+2m^2=0\) có nghiệm x=-2
tìm nghiệm còn lại
b Tìm m để phương trình \(\left(m^2-1\right)x^2-2mx+m^2+m+4=0\) có nghiệm x=2
Tìm nghiệm còn
lại?
b) Thay x=2 vào pt, ta được:
\(4\left(m^2-1\right)-4m+m^2+m+4=0\)
\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)
\(\Leftrightarrow5m^2-3m=0\)
\(\Leftrightarrow m\left(5m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=\dfrac{2m}{m^2-1}\)
\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)