tìm x
\(\left(x^2-5x+6\right)\cdot\sqrt{1-x}=0\)
Tính
\(\dfrac{1}{x-y}\cdot\sqrt{x^4\left(x-y\right)^2}\) (x>y)
\(\sqrt{27}\cdot\sqrt{48\cdot\left(2-a\right)^2}\) (a>2)
\(\left(\sqrt{2012}+\sqrt{2011}\right)\cdot\left(\sqrt{2012}+\sqrt{2011}\right)\)
\(\sqrt{\dfrac{64x^2}{49\left(y+1\right)^2}}\) (x<0;y>-1)
\(\sqrt{\dfrac{121x^2}{144\left(y+2\right)}}\left(x>0;y< -2\right)\)
\(\sqrt{\dfrac{676x^3}{169xy^2}}\left(x>0;y< 1\right)\)
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
Giải phương trình
a. \(\frac{1}{27}\cdot\left(x-3\right)^3-\frac{1}{125}\cdot\left(x-5\right)^3=0\)
b.\(125x^3-\left(2x+1\right)^3-\left(3x-1\right)^3=0\)
c.\(\left(x-3\right)^3+\left(x+1\right)^3=8\cdot\left(x-1\right)^3\)
d.\(\left(x^2-3x+2\right)\cdot\left(x^2+15x+56\right)+8=0\)
e.\(\left(2x^2-3x+1\right)\cdot\left(2x^2+5x+1\right)-9x^2=0\)
f.\(\left(x+6\right)^4+\left(x+8\right)^4=272\)
Giải phương trình: \(\left(8-\sqrt{5x-x^2}\right)\cdot\left(\sqrt{x}-\sqrt{5-x}\right)=4x-10\)
ĐKXĐ: \(0\le x\le5\).
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\).
PT đã cho tương đương với: \(\left(8-ab\right)\left(a-b\right)=2\left(a-b\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\ab=6\end{matrix}\right.\).
+) \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=2,5\left(TMĐK\right)\).
+) \(ab=6\Leftrightarrow\sqrt{x\left(5-x\right)}=6\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMĐK\right)\\x=3\left(TMĐK\right)\end{matrix}\right.\).
Vậy...
ĐK: \(0\le x\le5\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(pt\Leftrightarrow\left(8-ab\right)\left(a-b\right)=2\left(a^2-b^2\right)\)
\(\Leftrightarrow\left(a-b\right)\left(8-ab-2a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\ab+2a+2b=8\end{matrix}\right.\)
TH1: \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH2: \(ab+2a+2b=8\)
\(\Leftrightarrow\sqrt{5x-x^2}+2\sqrt{5-x}+2\sqrt{x}=8\)
\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x}-3\right)\left(\sqrt{5-x}+\sqrt{x}+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+\sqrt{x}=-7\left(l\right)\\\sqrt{5-x}+\sqrt{x}=3\end{matrix}\right.\)
\(\sqrt{5-x}+\sqrt{x}=3\)
\(\Leftrightarrow5+2\sqrt{5x-x^2}=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
Vậy ...
Tìm x, biết: a) \(0,2\cdot x+\left(-1,2\right)\cdot x+3,7=-6,3\) b) \(x^2=x\) C)\(0,\left(12\right):1,\left(6\right)=x:0,\left(4\right)\)
d) \(2\cdot\sqrt{x+1}-3=5\) e) \(|1-x|=\sqrt{2}-0,\left(1\right)\)
a)
<=> \(x\left(0,2-1,2\right)+3,7=-6,3\)
<=> \(-x=-10\)
<=> \(x=10\)
b)
<=> \(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d)
<=> \(2\sqrt{x+1}=8\)
<=> \(\sqrt{x+1}=4\)
<=> \(x=15\)
e)
<=> \(\orbr{\begin{cases}1-x=\sqrt{2}-0,\left(1\right)\\1-x=0,\left(1\right)-\sqrt{2}\end{cases}}\)
<=> \(\orbr{\begin{cases}1+0,\left(1\right)-\sqrt{2}=x\\x=1+\sqrt{2}-0,\left(1\right)\end{cases}}\)
a) 0,2x + ( -1, 2 )x + 3, 7 = -6, 3
<=> x( 0,2 - 1, 2 ) + 3, 7 = -6, 3
<=> -x = -10
<=> x = 10
b) x2 = x
<=> x2 - x = 0
<=> x( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
c) 0,(12) : 1,(6) = x : 0,(4)
<=> 4/33 : 5/3 = x : 4/9
<=> 4/55 = x : 4/9
<=> x = 16/495
d) \(2\sqrt{x+1}-3=5\)
\(\Leftrightarrow2\sqrt{x+1}=8\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\)
e) \(\left|1-x\right|=\sqrt{2}-0,\left(1\right)\)
\(\Leftrightarrow\left|1-x\right|=\sqrt{2}-\frac{1}{9}\)
\(\Leftrightarrow\left|1-x\right|=\frac{-1+9\sqrt{2}}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=\frac{-1+9\sqrt{2}}{9}\\1-x=\frac{1-9\sqrt{2}}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10-9\sqrt{2}}{9}\\x=\frac{8+9\sqrt{2}}{9}\end{cases}}\)
Tìm GTNN:
\(A=\sqrt{\left(x-2\right)\cdot\left(x-1\right)\cdot x\cdot\left(x+1\right)+5}\)
\(B=\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}\)
\(A=\sqrt{\left(x-2\right)\left(x-1\right)x\left(x+1\right)+5}\)
\(=\sqrt{\left(x^2-x-2\right)\left(x^2-x\right)+5}\)
Đặt \(t=x^2-x\) ta đc:
\(A=\sqrt{\left(t-2\right)t+5}=\sqrt{t^2-2t+5}\)
\(=\sqrt{\left(t-1\right)^2+4}\ge\sqrt{4}=2\)
Dấu = khi \(t=1\Leftrightarrow x^2-x=1\Leftrightarrow x=\pm\frac{1}{2}+\frac{\sqrt{5}}{2}\)
Vậy....
b)\(B=\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}\)
\(=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}\)
\(=\left|x-2\right|+\left|x+3\right|\)
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2\right|+\left|x+3\right|=\left|x-2\right|+\left|-x-3\right|\ge\left|x-2+\left(-x\right)-3\right|=5\)
Dấu = khi \(\left(x-2\right)\left(x+3\right)\ge0\)\(\Rightarrow-3\le x\le2\)
\(\Rightarrow\hept{\begin{cases}-3\le x\le2\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy....
Phân tích thành nhân tử ;
1, \(\left(x+2\right)\cdot\left(x+3\right)\cdot\left(x+4\right)\cdot\left(x+5\right)-24\)
2, \(x\cdot\left(x+4\right)\cdot\left(x+6\right)\cdot\left(x+10\right)+128\)
3, \(\left(x^2+5x+6\right)\cdot\left(x^2-15x+56\right)-144\)
4, \(\left(x-18\right)\cdot\left(x-7\right)\cdot\left(x+35\right)\cdot\left(x+90\right)-67x^2\)
5, \(\left(x-2\right)\cdot\left(x-3\right)\cdot\left(x-4\right)\cdot\left(x-6\right)-72x^2\)
1,(x+2)(x+5)(x+3)(x+4)-24=(x2+7x+10)(x2+7x+12)-24
Đặt x2+7x+10= t ta có t(t+2)-24=t2+2t-24=(t-4)(t+6)
hay (x2+7x+6)(x2+7x+16)
2,x(x+10)(x+4)(x+6)+128=(x2+10x)(x2+10x+24)+128
Đặt x2+10x=t ta có t(t+24)+128=t2+24t+128=(t+8)(t+16)
hay (x2+10x+8)(x2+10x+16)
3,(x+2)(x-7)(x+3)(x-8)-144=(x2-5x-14)(x2-5x-24)-144
Đặt x2-5x-14=t ta có t(t-10)-144=t2-10t-144=(t-18)(t+8)
Hay (x2-5x-32)(x2-5x-6)=(x2-5x-32)(x+1)(x-6)
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
giải hệ phương trình: A, \(\frac{1}{x}+\frac{1}{y}=9\) và \(\left(\frac{1}{\sqrt[3]{x}}+\frac{1}{\sqrt[3]{y}}\right)\cdot\left(\frac{1}{\sqrt[3]{x}}+1\right)\cdot\left(\frac{1}{\sqrt[3]{y}}+1\right)=18\)
B,\(3x^2-y=0\) và \(\left(\sqrt{5x^3-4}+2\sqrt[3]{7x^2-1}\right)\cdot\frac{y+4}{3}=2\cdot\left(y+19\right)\)
Tìm x biết
\(a,-\frac{1}{2}\left(3x-1\right)+\frac{3}{4}\left(3-2x\right)=-3\left(\frac{x}{2}-1\right)-\left(\frac{4}{5}\right)^{-1}\)
\(b,\sqrt{9\left(5x-1\right)}-\sqrt{16\cdot\left(5x-1\right)}+\sqrt{36\left(5x-1\right)}=15\)
MÌNH ĐANG CẦN GẤP GIẢI CỤ THỂ GIÚP MÌNH NHA
Tìm x
1, \(\left(2x-3\right)\cdot\left(2x+3\right)-4\cdot\left(x+2\right)^2=6\)
2,\(\left(3x+2\right)^2-\left(2x-1\right)\cdot\left(2x+1\right)=5\cdot\left(x-2\right)^2\)
3,\(\left(x+2\right)^2-\left(x+3\right)\cdot\left(x-1\right)=5x\)
1. (2x - 3) . (2x+3) - 4 . (x+ 2)2 = 6
[ ( 2x )2 - 32 ] - 4 . ( x2 + 2.x.2 + 22) = 6
4x2 - 9 - 4 . ( x2 + 4x + 4) = 6
4x2 - 9 - 4x2 - 16x - 16 = 6
-16x -25 = 6
x = \(-\dfrac{31}{16}\)