Cho : \(a,b,c,d>0\)
\(4\left(ab+bc+cd+da\right)\le\left(a+b+c+d\right)^2\)
CMBDT
\(ab+bc+cd+da\le\frac{\left(a+b+c+d\right)^2}{4}\)
\(abc+bcd+cda+dab\le\frac{\left(a+b+c+d\right)^3}{16}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Cho a,b,c,d \(\in\left[0,1\right]\). CMR \(0\le a+b+c+d-ab-bc-cd-da\le1\)
Cho a+b+c+d=0; ab+bc+ca=1
Rút gọn\(Q=\dfrac{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho \(a,b,c,d>0\).CMR: \(\frac{\left(a-1\right)\left(c+1\right)}{1+bc+c}+\frac{\left(b-1\right)\left(d+1\right)}{1+cd+d}+\frac{\left(c-1\right)\left(a+1\right)}{1+da+a}+\frac{\left(d-1\right)\left(b+1\right)}{1+ab+b}\ge0\)
cho a,b,c,d \(\in\left[0;1\right]\)cmr
\(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}\)
Đặt \(\hept{\begin{cases}x=\frac{a+b}{2}\\y=\frac{c+d}{2}\end{cases}}\)
Ta có:
\(\left(1-a\right)\left(1-b\right)\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\Rightarrow ab+bc+ca+1\ge bc+ca+a+b=\left(a+b\right)\left(c+1\right)\ge\left(a+b\right)\left(c+d\right)\left(1\right)\)
Tương tự ta có:
\(bc+cd+db+1\ge\left(a+b\right)\left(b+d\right)\left(2\right)\)
\(cd+da+ac+1\ge\left(a+b\right)\left(c+d\right)\left(3\right)\)
\(da+ab+bd+1\ge\left(a+b\right)\left(c+d\right)\left(4\right)\)
Từ (1), (2), (3), (4) ta có:
\(VT\le\frac{a+b+c+d}{\left(a+b\right)\left(c+d\right)}=\frac{x+y}{2xy}\le\frac{xy+1}{2xy}\left(@\right)\)
Ta lại có:
\(VP\ge\frac{3}{4}+\frac{1}{4x^2y^2}\left(@@\right)\)
Từ \(\left(@\right),\left(@@\right)\)cái cần chứng minh trở thành.
\(\frac{xy+1}{2xy}\le\frac{3}{4}+\frac{1}{4x^2y^2}\)
\(\Leftrightarrow\left(xy-1\right)^2\ge0\)(đúng)
Vậy ta có ĐPCM.
Cho 4 số hữu tỉ a,b,c,d sao cho a+b+c+d=0
CMR: ta có \(M=\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\) là số hữu tỉ
help me,please!
Ta có : a+b+c+d =0
→ a=-c-b-d
b= -a-c-d
c= -a-b-d
d= -a-b-c
rồi tính ra là xong