Cho ax+by+cz=0; a+b+c=\(\dfrac{1}{100}\); ax2+by2+cz2 khác 0. Tính\(S=\dfrac{\text{ax^2+by^2+cz^2}}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2}\)
Cho a + b + c = 2. Tính giá trị P=\(\frac{2-\left(ab+bc+ca\right)}{\left(a-\frac{4}{3}\right)^2+\left(b-\frac{4}{3}\right)^2+\left(c-\frac{4}{3}\right)^2}\)
Cho \(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=2\end{matrix}\right.\)
Tính \(P=\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}.\left(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\right)\)
cho ax+by+cz=0 va a+b+c=2017 tính \(\dfrac{ax^2+by^2+cz^2}{ac\left(x-z\right)^2+bc\left(y-z\right)^2+ab\left(x-y\right)^2}\)
Cho c2 + 2(ab - ac - bc) = 0; b khác c, a + b khác c.
CM \(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{a-c}{b-c}\)
Cho ba số thực a,b,c \(\in\) R. Chứng minh rằng
\(\dfrac{\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5}{5}\) = \(\dfrac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{3}\cdot\dfrac{\left(a-b\right)^2+\left(b-c\right)^3+\left(c-a\right)^2}{2}\)
Thực hiện các phép tính sau :
a) \(\left(\dfrac{5x+y}{x^2-5xy}+\dfrac{5x-y}{x^2+5xy}\right).\dfrac{x^2-25y^2}{x^2+y^2}\)
b) \(\dfrac{4xy}{y^2-x^2}:\left(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}\right)\)
c) \(\left[\dfrac{1}{\left(2x-y\right)^2}+\dfrac{2}{4x^2-y^2}+\dfrac{1}{\left(2x+y\right)^2}\right].\dfrac{4x^2+4xy+y^2}{16x}\)
d) \(\left(\dfrac{2}{x+2}-\dfrac{4}{x^2+4x+4}\right):\left(\dfrac{2}{x^2-4}+\dfrac{1}{2-x}\right)\)
Thực hiện các phép tính sau :
a) \(\left[\dfrac{1}{\left(2x-y\right)^2}+\dfrac{2}{4x^2-y^2}+\dfrac{1}{\left(2x+y\right)^2}\right]\)\(\cdot\dfrac{4x^2+4xy+y^2}{16x}\)
b) \(\left(\dfrac{2}{x+2}-\dfrac{4}{x^2+4x+4}\right):\left(\dfrac{2}{x^2-4}+\dfrac{1}{2-x}\right)\)
HELP MÌNH 2 câu này vớiiii !!!
Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của biến :
\(\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}-\dfrac{\left(b-x\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}-\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(a-b\right)}\)