Chủ đề:
Chương I - Căn bậc hai. Căn bậc baCâu hỏi:
giải phương trình : \(\sqrt{x+3}.x^4=2.x^4-2019x+2019\)
Bải 1 :Rút gọn :
\(M=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\)\(\left(\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\right)\)
Bài 2 : Rút gọn :
\(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\)\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của biến :
\(\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}-\dfrac{\left(b-x\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}-\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(a-b\right)}\)