Ta có:
Ta có:
(b-c)(a-c)(a+b)+(a-c)(a+b)(c-b)=0
suy ra
(b-c)(a^2+ab-ac-bc)+(a-c)(ac+bc-ab-b^2)=0
Ta có: c^2 +2(ab-ac-bc)=0
suy ra:
ab-ac-bc=-c^2+ab+bc
c^2+ab-bc-ac=ac+bc-ab
Vậy (b-c)(a^2-c^2+ab+bc+ac)+(a-c)(ab-bc-ac+c^2-b^2)=0
suy ra:(b-c)[a^2-(a-c)(b-c)]+(a-c)[(a-c)(b-c)-b^2]=0
suy ra a^2(b-c)-(a-c)(b-c)^2+(a-c)^2.(b-c)-(a-c).b^2=0
Suy ra a^2(b-c)+(a-c)^2.(b-c)=(a-c).b^2+(a-c)(b-c)^2
suy ra:(b-c)(a^2+(a-c)^2)=(a-c)(b^2+(b-c)^2)
suy ra a-c/b-c=a^2+(a-c)^2/b^2+(b-c)^2(đpcm)