\(\left(a+b+c+d\right)^2-4\left(ab+bc+cd+da\right)=a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)-4\left(ab+bc+cd+da\right)\)
\(=a^2+b^2+c^2+d^2+2\left(-ab+ac-ad-bc+bd-cd\right)=\left(a-b+c-d\right)^2\ge0\)
=> dpcm
\(\left(a+b+c+d\right)^2-4\left(ab+bc+cd+da\right)=a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)-4\left(ab+bc+cd+da\right)\)
\(=a^2+b^2+c^2+d^2+2\left(-ab+ac-ad-bc+bd-cd\right)=\left(a-b+c-d\right)^2\ge0\)
=> dpcm
CMBDT
\(ab+bc+cd+da\le\frac{\left(a+b+c+d\right)^2}{4}\)
\(abc+bcd+cda+dab\le\frac{\left(a+b+c+d\right)^3}{16}\)
Cho \(a,b,c,d>0\).CMR: \(\frac{\left(a-1\right)\left(c+1\right)}{1+bc+c}+\frac{\left(b-1\right)\left(d+1\right)}{1+cd+d}+\frac{\left(c-1\right)\left(a+1\right)}{1+da+a}+\frac{\left(d-1\right)\left(b+1\right)}{1+ab+b}\ge0\)
cho a,b,c,d \(\in\left[0;1\right]\)cmr
\(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}\)
Cho a, b, c, d là các số hữu tỉ thỏa mãn a+b+c+d=0. Chứng minh rằng \(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\)là một số hữu tỉ
Cho a, b, c, d là các số hữu tỉ và a+b+c+d=0
Chứng minh rằng:
\(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\) là số hữu tỉ
cho a b c d hữu tỉ thỏa mãn a+b+c+d =0 chứng minh rằng M=\(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\)
là một số hữu tỉ
dùng AM-GM nha
a) cm \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)với \(c>0;a,b\ge c\)
b) \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)với a,b,c,d>0
c) cho a,b,c,d>0
cm \(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{d}{a+b+c}}>2\)
Cho \(a,b,c,d\in R\)và \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)=16\)
Chứng minh : \(-3\le ab+ac+ad+bc+bd+cd+abcd\le5\)
1. Cho a,b,c,d là các số dương. Chứng minh rằng: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
2. Cho (x;y;z) và (a;b;c) là các số dương. Chứng minh rằng: \(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
3. Cho c>0 và a,b≥c. Chứng minh rằng: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)