Cho pt X^2+2(m-1)x+m^2=0
1) Giải pt khi m=4
2) Giải pt khi m=-4
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
Cho pt X^2 -2(m-1)x+m+1=0
Giải pt khi m=1 và tìm m để pt có 2 nghiệm x1,x2 thoả mãn x1/x2 +x2/x1 =4
a/ Thay m = 1 vào pt ta được: x2 + 2 = 0 => x2 = -2 => pt vô nghiệm
b/ Theo Vi-ét ta được: \(\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m+1\end{cases}\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(2m-2\right)^2-2\left(m+1\right)}{m+1}=4\) \(\Leftrightarrow\frac{4m^2-8m+4-2m-2}{m+1}=4\) \(\Leftrightarrow4m^2-10m+2=4m+4\) \(\Leftrightarrow4m^2-14m-2=0\)
Giải denta ra ta được 2 nghiệm: \(\begin{cases}x_1=\frac{7+\sqrt{57}}{4}\\x_2=\frac{7-\sqrt{57}}{4}\end{cases}\)
Khi m=1 ta có : \(x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)
Pt 2 nghiệm x1 ; x2 thỏa mãn : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1+x_2}=4\Leftrightarrow\frac{x_1^2+x_2^2-2x_1x_2+2x_1x_2}{x_1+x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1+x_2}=4\) (1)
Theo viet ta có: \(x_1x_2=\frac{c}{a}=\left(m+1\right)\); \(x_1+x_2=\frac{-b}{a}=2\left(m+1\right)\)
Thay vài (1) ta có: \(\frac{\left[2\left(m+1\right)\right]^2-2\left(m-1\right)}{2\left(m+1\right)}=4\) \(\Leftrightarrow4\left(m^2+2m+1\right)-2m+1=8\left(m+1\right)\Leftrightarrow4m^2+6m+5-8m-8=0\) \(\Leftrightarrow4m^2-2m-3=0\Leftrightarrow\left[\begin{array}{nghiempt}m=\frac{1+\sqrt{13}}{4}\\m=\frac{1-\sqrt{13}}{4}\end{array}\right.\)
cái chỗ cuối là x1 x2 thay bằng m1 m2 nha, mình ghi lộn á, cái chỗ đáp số ấy
Cho pt \(x^2-2\left(m+1\right)x+m-4=0\) (m là tham số)
a, giải pt khi m=4
b, C/m rằng với mọi giá trị của m pt luôn có 2 nghiệm phân biệt
\(a,m=4\Leftrightarrow x^2-10x=0\Leftrightarrow x\left(x-10\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\\ b,\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\)
Vậy PT luôn có 2 nghiệm phân biệt với mọi m
b1 : cho hệ pt (m-1)x - my = 3m-1
2x-y =m+5
a) giải hệ pt khi m = 2
b) tìm m để hệ pt có nghiệm duy nhất sao cho \(x^2 -y^2=4 \)
b2 : cho hệ pt mx + y = 1
x + my = m + 1
với gtrị nào của m thì hệ pt có nghiệm duy nhất
với gtrị nào của m thì hệ pt có vô số nghiệm
với gtrị nào của m thì hệ pt vô nghiệm
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
a) Thay m=1 vào phương trình, ta được:
\(x^4-4x^2-5=0\)
\(\Leftrightarrow x^4+x^2-5x^2-5=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-5\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-5\right)=0\)
mà \(x^2+1>0\forall x\)
nên \(x^2-5=0\)
\(\Leftrightarrow x^2=5\)
hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
Vậy: Khi m=1 thì tập nghiệm của phương trình là: \(S=\left\{\sqrt{5};-\sqrt{5}\right\}\)
pt :(x-1)(x^2-x-m)=0
a):giải pt khi m=1
b)tìm m để pt có 3 nghiệm tm:x1^2+x2^2+x3^2=4
Cho pt : căn (x^2+x+1)-căn (x^2-x+1)=m
A)giải pt khi m =2
B) tìm m để pt có nghiệm.
2. Cho PT
\(x^2-2\left(m+1\right)x+m^2+2=0\)
a) giải PT khi m=1
b) Tìm m để PT có 2 nghiệm phân biệt sao cho:
\(x^2_1+x_2^2=10\)
\(a,m=1\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
\(b,\) PT có 2 nghiệm pb \(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2+2\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2-8>0\\ \Leftrightarrow8m-4>0\Leftrightarrow m>\dfrac{1}{2}\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow4\left(m+1\right)^2-2\left(m^2+2\right)=10\\ \Leftrightarrow4m^2+8m+4-2m^2-4=10\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow m^2+4m-5=0\\ \Leftrightarrow\left(m+5\right)\left(m-1\right)=0\Leftrightarrow m=1\left(m>\dfrac{1}{2}\right)\)
Vậy m=1 thỏa mãn đề bài
cho pt 2x2-(m+3)x+m=0
a. giải pt khi m=3
b. giải pt khi m=2
c. giải pt khi m=-3
d. chứng minh pt luôn có nghiệm với mọi m
e.tìm m để x1+x2=5/2x1x2
f.tìm m để x12+x22=17/4
g.tìm gtnn A=x12+x12
k.tìm gtnn B=/x1-x2/