Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Ngọc Tuân
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:11

a: tan x(cot^2x-1)

\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)

=cotx-tanx/cotx=cotx(1-tan^2x)

b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)

\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)

c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)

\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)

=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)

=-cos^2x*cos^2x=-cos^4x

=>ĐPCM

Nhan Thị Thảo Vy
Xem chi tiết
B.Thị Anh Thơ
6 tháng 11 2019 lúc 18:07

a, \(\left(1-sin^2x\right)cot^2x+1-cot^2x\)

\(=cot^2x-sin^2x.cot^2x+1-cot^2x\)

\(=1-sin^2x.\frac{\text{cos}^2x}{sin^2x}=1-\text{cos}^2x=sin^2x\)

b,\(\left(tanx+cotx\right)^2-\left(tanx-cotx\right)2\)

\(=tan^2x2.tanx.cotx+cot^2x-tan^2x+2tanx.cotx-cot^2x\)

\(=4tanxcotx=4\)

c,\(\left(xsina-y\text{cos}a\right)^2+\left(x\text{cos}a+ysina\right)^2\)

\(=x^2sin^2a=2xysina\text{cos}a+y^2\text{cos}^2a+2xysina\text{cos}a+y^2sin^2a\)

\(=x^2\left(sin^2a+\text{cos}^2a\right)+y^2\left(sin^2a+\text{cos}^2a\right)\)

\(=x^2+y^2\)

Khách vãng lai đã xóa
Hạ Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2021 lúc 22:35

\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)

\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)

\(\Rightarrow P=4\)

\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)

\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)

\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)

Phong Vũ
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2021 lúc 8:01

Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)

2.

\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)

\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)

3.

\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)

4.

\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)

5.

\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)

\(=tan^2x+1+tan^2x=1+2tan^2x\)

chenchujian92
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 6 2020 lúc 16:01

Đúng như bạn viết vế trái là thế này:

\(\left(\frac{tan^2x}{1+tan^2x}\right)\left(\frac{1+cot^2x}{cotx}\right)=\left(\frac{1}{\frac{1}{tan^2x}+1}\right)\left(\frac{1+cot^2x}{cotx}\right)\)

\(=\left(\frac{1}{cot^2x+1}\right)\left(\frac{1+cot^2x}{cotx}\right)=\frac{1}{cotx}=tanx\)

Còn vế phải sẽ ra thế này:

\(\frac{1+tan^4x}{tan^2x+cot^2x}=\frac{1+tan^4x}{tan^2x+\frac{1}{tan^2x}}=\frac{tan^2x\left(1+tan^4x\right)}{tan^4x+1}=tan^2x\)

Hai vế ra kết quả khác nhau nên chắc bạn ghi sai đề :)

Thầy Tùng Dương
Xem chi tiết
Nguyễn Xuân Anh
23 tháng 3 2022 lúc 21:05

\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\) 

\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)

Khách vãng lai đã xóa
Cao Thị Kim Ngân
18 tháng 7 2022 lúc 10:43

a) \sin ^{4} x+\cos ^{4} x=\sin ^{4} x+\cos ^{4} x+2 \sin ^{2} x \cos ^{2} x-2 \sin ^{2} x \cos ^{2} x
\begin{aligned}&=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x \\&=1-2 \sin ^{2} x \cos ^{2} x\end{aligned}

b) \dfrac{1+\cot x}{1-\cot x}=\dfrac{1+\dfrac{1}{\tan x}}{1-\dfrac{1}{\tan x}}=\dfrac{\dfrac{\tan x+1}{\tan x}}{\dfrac{\tan x-1}{\tan x}}=\dfrac{\tan x+1}{\tan x-1}

c) \dfrac{\cos x+\sin x}{\cos ^{3} x}=\dfrac{1}{\cos ^{2} x}+\dfrac{\sin x}{\cos ^{3} x}=\tan ^{2} x+1+\tan x\left(\tan ^{2} x+1\right)
=\tan ^{3} x+\tan ^{2} x+\tan x+1

Nguyễn Quốc Phương
13 tháng 9 lúc 21:39

a) VT=(sin2x + cos x)2 - 2sinx . cosx = VP 

b) VT= \(\dfrac{1+\dfrac{1}{tanx}}{1-\dfrac{1}{tanx}}\)=VP

c) VT= \(\dfrac{1}{cos^2x}+\dfrac{sinx}{cosx}.\dfrac{1}{cos^2x}=1+tan^2x+tanx.\left(1+tan^2x\right)=VP\)

 

Võ Ngọc Bảo Châu
Xem chi tiết
Akai Haruma
13 tháng 9 2021 lúc 8:57

Câu này bạn đã đăng một lần thì lưu ý lần sau không đăng lặp nữa.

Nguyễn Thị Yến Nga
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2021 lúc 15:42

Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý

Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)

Nguyễn Việt Lâm
19 tháng 4 2021 lúc 16:07

Câu 1 đề vẫn có vấn đề:

\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)

\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)

\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)

Có thể coi như ko thể rút gọn tiếp

2.

\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)

\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)

\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)

\(=2\left(cos^2x+sin^2x\right)+2=4\)

Nguyễn Anh
Xem chi tiết
Tuyển Trần Thị
2 tháng 8 2017 lúc 17:55

\(=\frac{2}{\frac{1}{cotx}-1}\)\(+\frac{cotx+1}{cotx-1}\)

=\(\frac{2}{\frac{1-cotx}{cotx}}+\frac{cotx+1}{cotx-1}=\frac{2cotx}{1-cotx}+\frac{cotx+1}{cotx-1}\)

\(=\frac{-2cotx+cotx+1}{cotx-1}=\frac{1-cotx}{cotx-1}=-1\)